
User documentation

Nicolas KIELBASIEWICZ, Eric LUNÉVILLE

April 8, 2022

Contents

1 Introduction 1
1.1 What XLIFE++ is . 1
1.2 How to download XLIFE++ . 1

1.2.1 How XLIFE++ sources are organized . 2
1.2.2 How XLIFE++ binaries are organized . 2

1.3 Requirements . 2
1.3.1 Extensions . 2
1.3.2 Installation requirements . 3

1.4 Main installation and usage process, with CMAKE . 3
1.4.1 Configuration step . 4
1.4.2 How to set compilers . 4
1.4.3 How to set external dependencies . 5
1.4.4 Installation of binaries under WINDOWS . 8
1.4.5 Compilation of a program using XLIFE++ . 9
1.4.6 Example . 12

1.5 Alternative installation and usage procedure, without cmake . 15
1.5.1 Installation process . 15
1.5.2 Compilation of a program using XLIFE++ . 16

1.6 Alternative installation and usage process, with DOCKER . 16
1.7 Writing a program using XLIFE++ . 17
1.8 License . 18
1.9 Credits . 18

2 Getting started 19
2.1 The variational approach . 19
2.2 How does it work ? . 20

3 Examples 22
3.1 1D problems . 22

3.1.1 Dirichlet condition . 22
3.1.2 Robin condition . 23

3.2 Laplace Problems . 25
3.2.1 Neumann condition . 25
3.2.2 Dirichlet condition . 27
3.2.3 Periodic condition . 28
3.2.4 Transmission condition . 30
3.2.5 Average condition . 32

3.3 Discontinuous Galerkin method for 2D Dirichlet problem . 33
3.4 Mixed formulation using P0 and Raviart-Thomas elements . 35
3.5 Fictitious domain method . 36
3.6 2D Maxwell equations using Nedelec elements . 39
3.7 Eigenvalues and eigenvectors of Laplace operator . 41
3.8 3D Helmholtz problem using single layer potential integral equation 42
3.9 2D Helmholtz problem coupling FEM and integral representation 44

i

3.10 2D Helmholtz problem coupling FEM and BEM . 48
3.11 3D Maxwell problem using EFIE . 52
3.12 2D Elasticity problem . 55
3.13 2D Bilaplacian problem . 56
3.14 Solving wave equation . 58

4 XLIFE++ written in C++ 61
4.1 Instruction sequence . 61
4.2 Variables . 61
4.3 Basic operations . 62
4.4 if, switch, for and while . 62
4.5 In/out operations . 64
4.6 Using standard functions . 65
4.7 Use of classes . 65
4.8 Understanding memory usage . 66
4.9 Main user’s classes of XLIFE++ . 66

5 Initialization and global variables 68
5.1 The init function . 68
5.2 Managing your own options . 68
5.3 Using XLIFE++ with global parameters . 69

5.3.1 Global constants and objects . 69
5.3.2 Multi-threading . 70
5.3.3 The verbosity . 70

6 Mesh definition 71
6.1 Defining geometries . 71

6.1.1 Segments . 73
6.1.2 Elliptic and circular arcs . 74
6.1.3 Parametrized arcs . 76
6.1.4 Spline arcs . 77
6.1.5 Polygons and polygon-likes . 80
6.1.6 Ellipses and disks . 84
6.1.7 Parametrized surface . 87
6.1.8 Spline surface . 89
6.1.9 Polyhedra and polyhedron-likes . 90
6.1.10 Ellipsoids and balls . 97
6.1.11 Trunks and trunk-likes . 101
6.1.12 Definition of a geometry from its boundary . 110
6.1.13 Combining geometries . 112

6.2 Transformations on geometries . 114
6.2.1 Canonical transformations . 114
6.2.2 Composition of transformations . 117
6.2.3 Applying transformations . 117

6.3 Extrusion of geometries . 119
6.3.1 How to apply an extrusion ? . 119
6.3.2 How to define names of lateral domains of an extrusion ? . 121
6.3.3 Example: definition of a conesphere . 121

6.4 Defining a mesh from a geometry . 122
6.4.1 Structured internal meshing tools: structured generator . 124
6.4.2 Unstructured internal meshing tools: subdivision generator 126
6.4.3 Meshing tool with nested call to GMSH: gmsh generator . 138

ii

6.5 Open Cascade extension . 142
6.6 Extrude a mesh . 145
6.7 Split mesh element . 147
6.8 Loading a mesh from a file . 147
6.9 Transformations on meshes . 148
6.10 Using geometrical domain . 149

6.10.1 Retrieving domains . 150
6.10.2 Dealing with normals of a domain . 150
6.10.3 Map of domains . 152
6.10.4 Assign properties to domains . 153
6.10.5 Create domain of sides . 153
6.10.6 Set operation on domain . 154
6.10.7 Cracking a domain . 154
6.10.8 Having statistics about the mesh quality of a domain . 157
6.10.9 Summary of domain operations . 158

6.11 Dealing with parametrizations of geometrical domains . 158
6.12 A full example with periodic cavities . 159

7 Defining the problem 161
7.1 Domains, spaces, unknowns and test functions . 161

7.1.1 Domains and finite element spaces . 161
7.1.2 Spectral spaces . 163
7.1.3 Unknowns and test functions . 165
7.1.4 Dealing with collections . 166

7.2 Forms . 166
7.2.1 Operators on unknowns . 167
7.2.2 Operators on kernel . 169
7.2.3 Available kernels . 170
7.2.4 Interpolated function in operator . 170
7.2.5 Additional operation in operator . 171
7.2.6 Integration method . 172
7.2.7 Integral calculation tools . 177
7.2.8 Define bilinear form involving unknowns on different meshes 179
7.2.9 Dealing with non standard bilinear form - advanced usage - 180

7.3 Essential conditions . 181

8 Solving the problem 184
8.1 Algebraic representation . 184

8.1.1 Representing linear and bilinear forms . 184
8.1.2 Dealing with essential conditions . 186
8.1.3 Delay computation . 187
8.1.4 TermVector in details . 187
8.1.5 TermMatrix in details . 193
8.1.6 HMatrix . 197
8.1.7 Projector . 202

8.2 Linear Solvers . 204
8.2.1 Direct solvers . 204
8.2.2 Iterative solvers . 205

8.3 Eigen solvers . 208
8.3.1 How to call an eigen solver ? . 209
8.3.2 Results . 209
8.3.3 Calling sequence . 210

iii

8.3.4 Advanced usage of ARPACK . 218

9 Post processing and outputs 227
9.1 Integral representation . 227

9.1.1 Direct method . 227
9.1.2 Matrix method . 228
9.1.3 Kernel interpolation method . 229

9.2 Output functions . 230
9.2.1 Print objects . 230
9.2.2 Export TermMatrix and TermVector . 230

9.3 Graphical exploitation . 232

A External libraries 237
A.1 How to install BLAS and LAPACK libraries . 237
A.2 How to install UMFPACK library . 237
A.3 How to install ARPACK library . 238
A.4 How to install MinGW 64 bits on WINDOWS . 238

B Utility types in details 239
B.1 String, Strings . 239
B.2 Int, Dimen, Number, Numbers . 240
B.3 Real, Complex and Reals . 240
B.4 Angle unit . 241
B.5 Point . 241
B.6 Vector . 243
B.7 Matrix . 245
B.8 Parameters . 247

B.8.1 The Parameter object . 247
B.8.2 The Parameters object: list of Parameter . 248

B.9 Function . 249
B.9.1 User function and object function . 249
B.9.2 Advanced user . 254

B.10 Kernel . 255
B.10.1 User kernels . 255
B.10.2 Dealing with normal vectors . 258

B.11 Tabular . 258
B.12 SymbolicFunction . 260
B.13 Parametrization . 261
B.14 Splines . 263

B.14.1 C2 spline . 263
B.14.2 Catmull-Rom spline . 266
B.14.3 Bezier curve . 268
B.14.4 B-Spline . 269
B.14.5 Spline surface (nurbs) . 273

B.15 Timer . 274
B.16 Memory . 275
B.17 Mathematical resources . 275

B.17.1 Random generators . 275
B.17.2 Gauss formulae . 277
B.17.3 Exact solutions . 277
B.17.4 Special functions . 277
B.17.5 Computation of polynomial roots . 279

iv

B.17.6 Basic quadrature methods and FFT . 280
B.17.7 ODE solvers . 281

C CMAKE tutorial 283
C.1 On the command line . 283
C.2 Through GUI applications . 283
C.3 CMAKE options and cache entries . 284

C.3.1 On the command line . 284
C.3.2 Through GUI applications . 284

v

Preface

XLIFE++ is the heir of 2 main finite elements library developed in POEMS laboratory, namely MELINA (and its
C++ avatar MELINA++) and MONTJOIE, respectively developed since 1989 and 2003. It is a C++ high level library
devoted to extended finite elements methods. Writing programs using XLIFE++ needs only basic knowledge of
C++ language, so that it can be used to teach finite elements methods, but it is quite perfect for research activities.

XLIFE++ is self-consistent. It provides advanced mesh tools, with refinement methods, has every kind of
elements (including pyramids) needed by finite elements methods, boundary elements methods or discontinu-
ous galerkin methods, direct/iterative solvers and eigen solvers. Next to this, it provides also a wide range of
interfaces to well-known libraries or softwares, such that UMFPACK, ARPACK++, and an advanced interface to
the mesh generator GMSH, so that you can do everything needed in a single program.

This documentation is dedicated to students at Master level, to engineers and researchers at any level, in so far
as partial differential equations are concerned.

vi

1 Introduction

1.1 What XLIFE++ is

Partial differential equations (PDE hereafter) are the core of modeling. A wide range of problems in Physics,
Mechanics, Engineering, Mathematics, Health, Finance are modeled by PDEs.

XLIFE++ is a C++ library designed to solve these equations numerically. It is a free extended library based on
finite elements methods. It is an autonomous library, providing everything you need for solving such problems,
including interfaces to specific external libraries or softwares, such as GMSH, ARPACK++, UMFPACK, . . .

What does XLIFE++ do ?

• Problem description (real or complex, scalar or vector) by their variational formulations, with full access
to the internal vectors or matrices;

• Multi-variables, multi-equations, 1D, 2D and 3D, linear or non linear coupled systems;

• Easy geometric input by composite description , to build meshes thanks to GMSH;

• Easy automatic mesh generation on elementary geometries, based on refinement methods;

• Very high level user-friendly typed input language with full algebra of analytic and finite elements
functions. Your main program will be very similar to the mathematical formulation;

• A wide range of finite elements : segments, triangles, quadrangles, hexahedra, tetrahedra, prisms and
pyramids

• A wide set of internal linear direct and iterative solvers (LU, Cholesky, BiCG, BiCGStab, CG, CGS, GMRES,
QMR, SOR, SSOR, . . .) and internal eigenvalues and eigenvectors solvers, plus additional interfaces to
external solvers (ARPACK, UMFPACK,. . .);

• A full documentation suite : source documentation (online or inside sources), user documentation (pdf),
developer documentation (pdf);

• A parallel version using OpenMP.

1.2 How to download XLIFE++

XLIFE++ is downloadable at the following url http://uma.ensta-paris.fr/soft/XLiFE++/. You can down-
load releases and snapshots of either the source code or binaries. Snapshots are supposed to be generated
automatically very often.

There are 2 kinds of archives (snapshots or releases):

1. a "source" archive that contains all XLIFE++ source files and tex/pdf documentation;

2. a "api" archive that contains only source documentation generated by DOXYGEN

1

http://uma.ensta-paris.fr/soft/XLiFE++/

1.2.1 How XLIFE++ sources are organized

XLIFE++ sources are organized with several directories, described as follows for the main ones:

bin contains the xlifepp_project_setup.exe for Windows and the user scripts xlifepp.sh and xlifepp.bat. This
will be explained later.

doc contains the present user guide, the developer guide (also in pdf) and other specific documentations
extracted from the present user guide, such as a tutorial, an install documentation, and explanations
about examples.

etc contains a lot of stuff such as templates for installation, the multilingual files, . . .

examples contains example files ready to compile and use.

ext contains source files for external dependencies, such as ARPACK++, EIGEN, AMOS libraries

src contains all C++ sources of the XLIFE++ library

tests contains all unitary and system tests to check your installation

lib will contain the static libraries of XLIFE++, after the compilation step.

usr contains the user files to write and compile a C++ program using XLIFE++

You also have a very important file CMakeLists.txt, that is the CMAKE compilation script.

1.2.2 How XLIFE++ binaries are organized

XLIFE++ binaries are organized with several directories, described as follows for the main ones:

bin contains the xlifepp_project_setup.exe for Windows and the user scripts xlifepp.sh and xlifepp.bat. This
will be explained later.

etc contains a lot of stuff such as templates for installation, the multilingual files, . . .

share/doc contains the present user guide, the developer guide (also in pdf) and other specific documentations
extracted from the present user guide, such as a tutorial, an install documentation, and explanations
about examples.

share/examples contains example files ready to compile and use.

ext contains source files for external dependencies, such as ARPACK++, EIGEN, AMOS libraries

tests contains all unitary and system tests to check your installation

lib contains the static libraries of XLIFE++.

You also have a very important file CMakeLists.txt, that is the CMAKE compilation script.

1.3 Requirements

1.3.1 Extensions

To use XLIFE++ full capabilities, you may need some external libraries to activate extensions:

• The main mesh engine needs GMSH (http://gmsh.info). It is not a strong dependency insofar as you
just have to tell XLIFE++ where GMSH binary is.

• To use it as eigen solver, XLIFE++ provides its own ARPACK distribution (http://www.caam.rice.edu/
software/ARPACK/). This internal distribution is patched to work with recent compilers, but you may
prefer using another distribution. See section A.3 for details and recommendations.

2

http://gmsh.info
http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/

• To use it as direct solver, you may install UMFPACK (http://faculty.cse.tamu.edu/davis/suitesparse.
html). See section A.2 for details and recommendations.

• Tu use it as GPU solver, you may install MAGMA (http://icl.cs.utk.edu/magma/).

• To visualize solutions of your programs using XLIFE++, you may install GMSH (http://geuz.org/gmsh),
PARAVIEW (http://www.paraview.org), MATLAB (https://fr.mathworks.com) or OCTAVE (https:
//sourceforge.net/projects/octave/files/).

XLIFE++ provides 2 external libraries: EIGEN (http://eigen.tuxfamily.org/, essentially for
SVD, and AMOS (http://www.netlib.org/amos/) for Bessel/Hankel functions with complex ar-

guments.

1.3.2 Installation requirements

Basically, XLIFE++ compilation depends on the cross-platform builder CMAKE, available at http://cmake.org.
To know how to install and use XLIFE++ this way, please read section 1.4.

For UNIX systems, you can use an alternative installation procedure that does not require CMAKE. To know how
to install and use XLIFE++ this way, please read section 1.5.

Another way to install XLIFE++ is to download a DOCKER container (like a virtual machine containing everything
to build and run XLIFE++). It is cross-platform. To know how to install and use XLIFE++ this way, please read
section 1.6.

Of course, you need a C++ compiler. To install a proper 64bits compiler on WINDOWS, see section A.4.

1.4 Main installation and usage process, with CMAKE

You download XLIFE++ from its website http://uma.ensta-paris.fr/soft/XLiFE++/.

• Either you download XLIFE++ sources: you have to unzip the archive at any place you choose in the
filesystem. Then, you follow configuration procedure by setting at least a C++ compiler, paths to GMSH

and PARAVIEW and eventually paths to external libraries BLAS, LAPACK, ARPACK and UMFPACK. When
done, you will have to compile XLIFE++ source code.

• Or you download XLIFE++ binaries: you will have to run the installer if you are on WINDOWS (see
subsection 1.4.4), or follow the configuration procedure with cmake by setting a C++ compiler, paths to
GMSH and PARAVIEW, and eventually paths to external libraries BLAS, LAPACK, ARPACK and UMFPACK

libraries. In following sections, you will be guided on which options you may use or not as far as sources
or binaries are concerned.

If you want to use clang++ as a compiler, please download dedicated clang++ binaries, as they
are necessarily generated without OPENMP activated.

If you need to learn how to use cmake, please go to Appendix C. Keep in mind that running CMAKE

several times is not a problem. Indeed, as far as external dependencies are concerned, CMAKE is
supposed to find a wide range of possible configurations, but not every time of course!

3

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://icl.cs.utk.edu/magma/
http://geuz.org/gmsh
http://www.paraview.org
https://fr.mathworks.com
https://sourceforge.net/projects/octave/files/
https://sourceforge.net/projects/octave/files/
http://eigen.tuxfamily.org/
http://www.netlib.org/amos/
http://cmake.org
http://uma.ensta-paris.fr/soft/XLiFE++/

1.4.1 Configuration step

In the following, we will consider CMAKE used in command-line mode, from a build directory directly
inside sources so that the path to CMakeLists.txt file is ..

Cache entries that will be explained can be set directly through GUI applications.

The default build configuration is to use EIGEN and AMOS libraries, as they are provided directly by XLIFE++,
and multi-threading with OPENMP, if the compiler is compatible with it (for instance, clang++ on MAC OS is
not).

cmake . .

As explained in Appendix C, you can specify a generator with option -G, namely the native makefile or the
IDE file you want. The default generator is "Unix Makefiles" on LINUX and MAC OS computers, and "MinGW
Makefiles" on WINDOWS, but it can have a wide range of possible values. To know what you can do, please
consult CMAKE help. For instance, if you want to generate a CodeBlocks project on LINUX computer, you may
choose Codeblocks - Unix Makefiles

cmake . . [−G <generator_name >]

In the following, we will focus on cache entries you may have to set.

When CMAKE is running, it stores values of cache entries in a cache file CMakeCache.txt in the
build directory. As a result, when you run again CMAKE, you are not forced to give already given

options.

1.4.2 How to set compilers

By default, CMAKE consider each directory defined in your paths environment variables to find compilers, and
select the first compiler found. Nevertheless, you may select another compiler. To do so, you need 2 CMAKE

cache entries:

CMAKE_CXX_COMPILER to set the C++ compiler

CMAKE_Fortran_COMPILER to set the Fortran compiler (necessary to AMOS compilation, and eventually to
ARPACK compilation if you choose provided source distribution). Please notice the spelling, as CMAKE is
case-sensitive !!

cmake . . −DCMAKE_CXX_COMPILER=g++−7 −DCMAKE_Fortran_COMPILER=gfortran −7 [other_options]

If you want to configure XLIFE++ in Debug mode (or another one, you may use the following entry :

CMAKE_BUILD_TYPE Default value is "Release". Other possible values are "Debug", "RelWithDebInfo", . . .

cmake . . −DCMAKE_CXX_COMPILER=g++−7 −DCMAKE_Fortran_COMPILER=gfortran −7 −DCMAKE_BUILD_TYPE=Debug
[other_options]

When you look at the CMAKE log, you are supposed to read that the rightful compiler is used with the rightful
build type, and that activated dependencies are found and used and that deactivated dependencies are not
used.

4

1.4.3 How to set external dependencies

In the following, [general_entries] refers to options introduced in subsection 1.4.2

To activates all dependencies, you can type the following:

cmake . . [general_entries] −DXLIFEPP_DEPS=ENABLE_ALL

XLIFEPP_DEPS Default value is "DEFAULT". Other possible values are "ENABLE_ALL" or "DISABLE_ALL".

For XLIFE++ binaries, this option is used to generate them, so you don’t have to use it.

When you use CMAKE GUI application, option XLIFEPP_DEPS is useless, as the list of specific
options discussed in the following warning are displayed as checkboxes.

For every external dependency, CMAKE search files in standard environment paths and in specific paths defined
in CMAKE configuration script. So if external dependencies are installed by package managers, CMAKE will find
them.
If it is not the case, or if the library found is not the one you want to use, you can tell CMAKE where to find them,
as we will see in the following.

If you don’t want to activate every external dependency, but only some of them, you may use a subset
of the following options (default behavior in bold):

XLIFEPP_ENABLE_ARPACK To enable/disable use of ARPACK. Possible values are ON or OFF.

XLIFEPP_ENABLE_UMFPACK To enable/disable use of UMFPACK. Possible values are ON or OFF.

XLIFEPP_ENABLE_AMOS To enable/disable use of AMOS. Possible values are ON or OFF.

XLIFEPP_ENABLE_OMP To enable/disable use of OPENMP. Possible values are ON or OFF.

XLIFEPP_ENABLE_EIGEN To enable/disable use of EIGEN. Possible values are ON or OFF. Default is the
same as XLIFEPP_ENABLE_OMP, as EIGEN needs OPENMP.

XLIFEPP_ENABLE_MAGMA To enable/disable use of MAGMA. Possible values are ON or OFF.

Configuring paths to GMSH and PARAVIEW executables

In the following, [general_entries] refers to options introduced in subsection 1.4.2 and [deps_entries]

refers to others options introduced since subsection 1.4.3

To set the full path to GMSH executable, you can type the following:

cmake . . [general_entries] [deps_entries] −DXLIFEPP_GMSH_EXECUTABLE=path/ to /gmsh/ executable

To set the full path to PARAVIEW executable, you can type the following:

cmake . . [general_entries] [deps_entries]
−DXLIFEPP_PARAVIEW_EXECUTABLE=path/ to /paraview/ executable

You have to set the full path to GMSH/PARAVIEW executables and not applications. Executables are
inside applications. If application names are Gmsh.app and paraview.app and are located in the

Applications directory, GMSH and PARAVIEW will be correctly detected.

5

Configuring dependency on BLAS and LAPACK libraries

In the following, [general_entries] refers to options introduced in subsection 1.4.2 and [deps_entries]

refers to others options introduced since subsection 1.4.3

To tell to CMAKE where to find BLAS library, you just have to set the directory containing the BLAS library, with
the option XLIFEPP_BLAS_LIB_DIR:

cmake . . [general_entries] [deps_entries] −DXLIFEPP_BLAS_LIB_DIR=path/ to / blas / l i b r a r y / directory

To tell to CMAKE where to find LAPACK library, you just have to set the directory containing the LAPACK library,
with the option XLIFEPP_LAPACK_LIB_DIR:

cmake . . [general_entries] [deps_entries]
−DXLIFEPP_LAPACK_LIB_DIR=path/ to / lapack / l i b r a r y / directory

Setting the directory is sufficient only if the BLAS library name is standard, such as libblas.a, libblas.so,
libblas.dylib, libblas.dll, blas.lib, . . . (the same goes for LAPACK) If it is not the case, it means that

BLAS/LAPACK is not installed properly (for instance with a version number as a suffix). Prefer using options
XLIFEPP_BLAS_LIB and XLIFEPP_LAPACK_LIB instead, to set the full path to BLAS and LAPACK libraries

If you downloaded binary libraries provided by the XLIFE++ website, as recommended in subsec-
tion 1.3.1, it will be something like (if you downloaded 64bits binaries):

cmake . . [general_entries] [deps_entries] −DXLIFEPP_BLAS_LIB_DIR="C : / . . . / lapack −3.5.0 _64"
−DXLIFEPP_LAPACK_LIB_DIR="C : / . . . / lapack −3.5.0 _64"

When using clang++, you have to set the path to FORTRAN library, as clang++ is not able to find it by
itself (contrary to gcc, as gcc and FORTRAN library are in the same distribution). To do so, you just

have to use the option XLIFEPP_FORTRAN_LIB_DIR:

cmake . . [general_entries] [deps_entries]
−DXLIFEPP_FORTRAN_LIB_DIR=path/ to / gfortran / l i b r a r y / directory

Setting the directory is sufficient only if the FORTRAN library name is standard, such as libgfortran.a,
libgfortran.so, libgfortran.dylib, libgfortran.dll, gfortran.lib, . . . If it is not the case, it means that

FORTRAN is not installed properly (for instance with a version number as a suffix). Prefer using option
XLIFEPP_FORTRAN_LIB instead, to set the full path to FORTRAN library

Configuring dependency on ARPACK library

In the following, [general_entries] refers to options introduced in subsection 1.4.2 and [deps_entries]

refers to others options introduced since subsection 1.4.3

First of all, you have to choose if you want to use the internal ARPACK distribution of XLIFE++, or an external
one. Of course, the one provided by XLIFE++ is detected automatically. To select the rightful mode, you have to
set the option:

XLIFEPP_SYSTEM_ARPACK To choose an external distribution of ARPACK or the one provided by XLIFE++.
Possible values are ON or OFF. Default is OFF, to use the distribution provided by XLIFE++

6

If you choose to use an external distribution of ARPACK, you now have to tell CMAKE where to find ARPACK

library. To do so, you just have to set the directory containing the ARPACK library, with the option
XLIFEPP_ARPACK_LIB_DIR:

cmake . . [general_entries] [deps_entries] −DXLIFEPP_BLAS_LIB_DIR=path/ to / blas / l i b r a r y / directory

Setting the directory is sufficient only if the ARPACK library name is standard, such as libarpack.a,
libarpack.so, libarpack.dylib, libarpack.dll, arpack.lib, . . . If it is not the case, it means that

ARPACK is not installed properly (for instance with a version number as a suffix). Prefer using option
XLIFEPP_ARPACK_LIB instead, to set the full path to ARPACK library

If you downloaded binary libraries provided by the XLIFE++ website, as recommended in subsec-
tion 1.3.1, it will be something like (if you downloaded 64bits binaries):

cmake . . [general_entries] [deps_entries]
−DXLIFEPP_ARPACK_LIB_DIR="C : / . . . / ARPACK_64/lib_mingw64"

When using clang++, you have to set the path to FORTRAN library, as clang++ is not able to find it byt
itself (contrary to gcc, as gcc and FORTRAN library are in ther same distribution). To do so, you just

have to use the option XLIFEPP_FORTRAN_LIB_DIR:

cmake . . [general_entries] [deps_entries]
−DXLIFEPP_FORTRAN_LIB_DIR=path/ to / gfortran / l i b r a r y / directory

Setting the directory is sufficient only if the FORTRAN library name is standard, such as libgfortran.a,
libgfortran.so, libgfortran.dylib, libgfortran.dll, gfortran.lib, . . . If it is not the case, it means that

FORTRAN is not installed properly (for instance with a version number as a suffix). Prefer using option
XLIFEPP_FORTRAN_LIB instead, to set the full path to FORTRAN library

Configuring dependency on SUITESPARSE/ UMFPACK libraries

In the following, [general_entries] refers to options introduced in subsection 1.4.2 and [deps_entries]

refers to others options introduced since subsection 1.4.3

UMFPACK is a part of SUITESPARSE distribution (that also contains amd, colamd, camd, ccolamd, cholmod,
metis, and suitesparseconfig, . . .).

To tell to CMAKE where to find UMFPACK library/SUITESPARSE distribution, you just have to set the home
directory containing the SUITESPARSE distribution, with the option
XLIFEPP_SUITESPARSE_HOME_DIR:

cmake . . [general_entries] [deps_entries]
−DXLIFEPP_SUITESPARSE_HOME_DIR=path/ to / suitesparse /home/ directory

If you downloaded binary libraries provided by the XLIFE++ website, as recommended in subsec-
tion 1.3.1, it will be something like (if you downloaded 64bits binaries):

cmake . . [general_entries] [deps_entries]
−DXLIFEPP_SUITESPARSE_HOME_DIR="C : / . . . / SuiteSparse_64 "

7

When using clang++, you have to set the path to FORTRAN library, as clang++ is not able to find it byt
itself (contrary to gcc, as gcc and FORTRAN library are in ther same distribution). To do so, you just

have to use the option XLIFEPP_FORTRAN_LIB_DIR:

cmake . . [general_entries] [deps_entries]
−DXLIFEPP_FORTRAN_LIB_DIR=path/ to / gfortran / l i b r a r y / directory

Setting the directory is sufficient only if the FORTRAN library name is standard, such as libgfortran.a,
libgfortran.so, libgfortran.dylib, libgfortran.dll, gfortran.lib, . . . If it is not the case, it means that

FORTRAN is not installed properly (for instance with a version number as a suffix). Prefer using option
XLIFEPP_FORTRAN_LIB instead, to set the full path to FORTRAN library

If setting XLIFEPP_SUITESPARSE_HOME_DIR is not enough to find every library of SUITESPARSE

distribution, you can use specific options of the form:

XLIFEPP_XXX_INCLUDE_DIR to specify the XXX header, where XXX can be AMD, COLAMD, CAMD,
CCOLAMD, CHOLMOD, METIS, SUITESPARSECONFIG or UMFPACK.

XLIFEPP_XXX_LIB_DIR to specify the XXX library, where XXX can be AMD, COLAMD, CAMD, CCOLAMD,
CHOLMOD, METIS, SUITESPARSE (only on MAC OS), SUITESPARSECONFIG or UMFPACK.

Setting the directories is sufficient only if the SUITESPARSE library names are standard, such as libamd.a,
libamd.so, libamd.dylib, libamd.dll, amd.lib, . . . (the same goes for the other libraries) If it is not the case, it
means that SUITESPARSE is not installed properly (for instance with a version number as a suffix). Prefer us-
ing option XLIFEPP_XXX_LIB instead, to set the full path to SUITESPARSE libraries, where XXX can be AMD,
COLAMD, CAMD, CCOLAMD, CHOLMOD, METIS, SUITESPARSE (only on MAC OS), SUITESPARSECONFIG
or UMFPACK.

Configuring dependency on MAGMA library

In the following, [general_entries] refers to options introduced in subsection 1.4.2 and [deps_entries]

refers to others options introduced since subsection 1.4.3

To tell to CMAKE where to find MAGMA library, you just have to set the directory containing the MAGMA library,
with the option XLIFEPP_MAGMA_LIB_DIR and the directory containing the MAGMA header files, with the
option XLIFEPP_MAGMA_INCLUDE_DIR:

cmake . . [general_entries] [deps_entries] −DXLIFEPP_MAGMA_LIB_DIR=path/ to /magma/ l i b r a r y / directory
−DXLIFEPP_MAGMA_INCLUDE_DIR=path/ to /magma/ include / directory

1.4.4 Installation of binaries under WINDOWS

When downloading binaries under WINDOWS, you just have to run the installer. To do so, administrator
elevation is required. If a previous distribution of XLIFE++ is installed in the folder you choose, the installer
can remove it itself. Furthermore, it is highly recommended to install every component.
Now, in the bin subdirectory of the XLIFE++ install directory, you will find xlifepp_configure.exe. To run it,
administrator elevation is required.

1. First, you have to set the folder containing XLIFE++.

8

2. As mentioned in the banner, a C++ compiler, CMAKE and GMSH have to be installed on your computer
and defined in the WINDOWS path1. An EDI such as CODEBLOCKS and PARAVIEW are not mandatory but
highly recommended. Click on the Configure button.

3. When everything is OK, message "Configuration complete" is displayed. To compile your own program,
you can click on the New project button or run xlifepp_new_project.exe. See section 1.4.5

1.4.5 Compilation of a program using XLIFE++

The manual way

This way supposes that you know where XLIFE++ is installed.

1. You create your working directory,

2. You copy the main.cpp file into your working directory,

3. You copy the CMakeLists.txt file from the build directory (the directory in which you ran installation
process) into your working directory,

4. You run CMAKE on the CMakelists.txt file to get your makefile or files for your IDE project (Eclipse, XCode,
CodeBlocks, Visual C++, . . .),

5. You can now edit the main.cpp file to write your program and enjoy compilation with XLIFE++.

The command-line way

This way is possible to make easier the manual way. In the bin directory of XLIFE++, you have shell script
called xlifepp.sh for MacOS and Linux, and a batch script called xlifepp.bat. You can define a shortcut on
it wherever you want.
Here is the list of options of both scripts:

1A simple tool to edit the window path is WINDOWS PATH EDITOR (https://rix0rrr.github.io/WindowsPathEditor/)

9

https://rix0rrr.github.io/WindowsPathEditor/

USAGE:
xlifepp.sh --build [--interactive] [(--generate|--no-generate)]
xlifepp.sh --build --non-interactive [(--generate|--no-generate)]

[--compiler <compiler>] [--directory <dir>]
[--generator-name <generator>]
[--build-type <build-type>]
[(--with-omp|--without-omp)]

xlifepp.sh --help
xlifepp.sh --version

MAIN OPTIONS:
--build, -b copy cmake files and eventually sample of

main file and run cmake on it to prepare
your so-called project directory.
This is the default

--generate, -g generate the project. Used with --build option.
This is the default.

--help, -help, -h show the current help
--interactive, -i run xlifepp in interactive mode. Used with

--build option. This is the default
--non-interactive, -noi run xlifepp in non interactive mode. Used with

--build option
--no-generate, -nog prevent generation of your project. You will

do it yourself.
--version, -v print version number of XLiFE++ and its date
--verbose-level <value>, set the verbose level. Default value is 1
-vl <value>

OPTIONS FOR BUILD IN NON INTERACTIVE MODE:
--build-type <value>, set cmake build type (Debug, Release, ...).
-bt <value>
--cxx-compiler <value>, set the C++ compiler to use.
-cxx <value>
--directory <dir>, set the directory where you want to build
-d <dir> your project
--generator-name <name>, set the cmake generator.
-gn <name>
-f <filename>, copy <filename> as a main file for the user
--main-file <filename> project.
-nof, do not copy the sample main.cpp file. This is
--no-main-file the default.
--info-dir, -id set the directory where the info.txt file is
--with-omp, -omp activates OpenMP mode
--without-omp, -nomp deactivates OpenMP mode

The graphical way on MAC OS

This way is possible to make easier the manual way and more pleasant than the command-line way. On the
website, you have a GUI application called xlifepp-qt for MacOS, (Windows and Linux will come soon). You
can define a shortcut on it wherever you want.

10

Figure 1.1: The "Configuration" tab of xlifepp-qt application

Figure 1.2: The "Use" tab of xlifepp-qt application

This application is a graphical user interface to the first 3 steps of the manual way.

The graphical way on WINDOWS

1. You run the generator xlifepp_new_project.exe located in the bin subdirectory of the XLIFE++ install
directory. The XLIFE++ folder should be correct but you can fix it if necessary.

2. You select the folder in which you will write your program using XLIFE++. If it already exists, the generator
asks you to clean it or not. This window gives some information about XLIFE++: the compiler used
to generate it, if the library supports omp and the debug/release status. You should use a compatible
compiler with this library. If the default C++ compiler found on your computer is not compatible, you can
select another one by clicking on the use compiler folder button.

11

3. Select the type of your project. For the moment only CodeBlocks-MinGW and Makefile are working but
CODEBLOCKS is highly recommended! Select a main file from the proposed list. This main fill will be
copied in your application folder. Be care, if you choose "none", no main file will be copied and the
generator will fail if there is no main file in your application folder. This option is only useful if you want
to keep an existing main file in your application folder! Click on the Generate button and wait:

4. When everything is complete, you can either exit the tool or run the program that opens the generated
project (CODEBLOCKS in the example) by clicking on the run button.

1.4.6 Example

Here follows an example showing how to install and use XLIFE++ with command line tools described in the
previous sections. The character ˜ denotes the home directory of the user. The commands are numbered
starting from 1 ; each number is preceded by the name of the current working directory.

We first decompress the archive in a new directory (renamed xlifepp), create a build directory and launch the
creation of the libraries:

~ (1) tar xf ~/Downloads/xlifepp-sources-v2.0.1-2018-05-09.tbz
~ (2) mv xlifepp-sources-v2.0.1-2018-05-09 xlifepp
~ (3) cd ~/xlifepp
~/xlifepp (4) mkdir build
~/xlifepp (5) cd build
~/xlifepp/build (6) cmake .. -DXLIFEPP_ENABLE_ARPACK=ON -DXLIFEPP_ENABLE_UMFPACK=ON
-- The CXX compiler identification is AppleClang 9.1.0.9020039

.

. (text intentionally removed)

.
-- Build files have been written to: ~/xlifepp/build
~/xlifepp/build (7) make libs
Scanning dependencies of target xlifepp_form
[0%] Building CXX object CMakeFiles/xlifepp_form.dir/src/form/BilinearForm.cpp.o

12

.

. (text intentionally removed)

.
[100%] Built target libs
~/xlifepp/build (8)

Now, we can create an executable file. To do that, we choose to create a test directory and to compile one of the
examples present in this documentation:

~/xlifepp/build (8) mkdir /tmp/test
~/xlifepp/build (9) cd /tmp/test
/tmp/test (10) ~/xlifepp/bin/xlifepp.sh

* xlifepp *

Project directory (default is current directory):

/tmp/test exists
The following generators are available on this platform:
1 -> Unix Makefiles
2 -> Ninja
3 -> Xcode
4 -> CodeBlocks - Ninja
5 -> CodeBlocks - Unix Makefiles
6 -> CodeLite - Ninja
7 -> CodeLite - Unix Makefiles
8 -> Sublime Text 2 - Ninja
9 -> Sublime Text 2 - Unix Makefiles
10 -> Kate - Ninja
11 -> Kate - Unix Makefiles
12 -> Eclipse CDT4 - Ninja
13 -> Eclipse CDT4 - Unix Makefiles
14 -> KDevelop3
15 -> KDevelop3 - Unix Makefiles
Your choice (default is 1): 1
The following compilers are available:
1 -> clang++-4.2.1
The following main files are available:
1 -> main.cpp
2 -> elasticity2dP1.cpp
3 -> helmholtz2d-Dirichlet_single_layer.cpp
4 -> helmholtz2dP1-DtN_scalar.cpp
5 -> helmholtz2dP1-cg.cpp
6 -> helmholtz2d_FEM_BEM.cpp
7 -> helmholtz2d_FE_IR.cpp
8 -> helmholtz3d-Dirichlet_single_layer.cpp
9 -> laplace1dGL60-eigen.cpp
10 -> laplace1dP1.cpp
11 -> laplace1dP10Robin.cpp
12 -> laplace2dP0_RT1.cpp
13 -> laplace2dP1-average.cpp
14 -> laplace2dP1-dirichlet.cpp
15 -> laplace2dP1-periodic.cpp
16 -> laplace2dP1_Neumann.cpp
17 -> laplace2dP2-eigen.cpp
18 -> laplace2dP2-transmission.cpp
19 -> maxwell2dN1.cpp
20 -> maxwell3D_EFIE.cpp

13

21 -> wave_2d_leap-frog.cpp
Your choice (default is 1): 14
Copying laplace2dP1-dirichlet.cpp
Cleaning CMake build files
You can use:
1 -> sequential
The following build types are available
1 -> Release
Copying CMakeLists.txt
-- The CXX compiler identification is AppleClang 9.1.0.9020039
-- Check for working CXX compiler: /usr/bin/clang++
-- Check for working CXX compiler: /usr/bin/clang++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- OpenMP is not used
-- XLiFE++ was compiled with clang++-4.2.1
-- XLiFE++ was compiled without OpenMP
-- XLiFE++ was compiled in Release mode
-- XLiFE++ libraries found !
-- Arpack is used
-- Umfpack is used
-- LAPACK is used
-- BLAS is used
-- AMOS is used
-- Magma is not used
-- Metis is not used
-- MPI is not used
-- Configuring done
-- Generating done
-- Build files have been written to: /tmp/test
/tmp/test (11) make
Scanning dependencies of target checklock
[0%] Built target checklock
Scanning dependencies of target exec-x86_64-darwin-clang++-4.2.1-Release
[50%] Building CXX object CMakeFiles/exec-x86_64-darwin-clang++-4.2.1-Release.dir/laplace2dP1-
dirichlet.cpp.o
[100%] Linking CXX executable exec-x86_64-darwin-clang++-4.2.1-Release
[100%] Built target exec-x86_64-darwin-clang++-4.2.1-Release
/tmp/test (12) ./exec-x86_64-darwin-clang++-4.2.1-Release
__ __ __ _ ___ __
\ \/ / / /(_) / __\/___ _
\ / / / | |/ _\ /__| |_ _| |_
/ \/ /__| / / //_|_ _|_ _|

/_/_____/_\/ __/ |_| |_|

XLiFE++ v2.0.1-r79 (2018-07-20)
running on july 25, 2018 at 16h08 on Darwin-i386 (MacBook-Pro)

computing FE term intg_Omega grad(u) | grad(v), using 1 threads : done
reducing FE term A using pseudo reduction method
TermMatrix A computed, size 400 X 400 : SuTermMatrix A_u_v : block (v, u) -> matrix 400 X 400
of real scalar in symmetric_compressed sparse (csr,csc) (1521 coefficients)

solving linear system A * X = B (size 400) using umfpack
/tmp/test (13) ls
CMakeCache.txt cmake_install.cmake

14

CMakeFiles exec-x86_64-darwin-clang++-4.2.1-Release
CMakeLists.txt laplace2dP1-dirichlet.cpp
Makefile log.txt
U_LD_Omega.vtu print.txt
/tmp/test (14)

The result file U_LD_Omega.vtu can then be displayed using PARAVIEW.

1.5 Alternative installation and usage procedure, without cmake

1.5.1 Installation process

The procedure presented above requires CMAKE for both the installation and the usage of XLIFE++. Here is an
alternative solution that do not use CMAKE, and is targeted for Unix-like systems, namely LINUX and MAC OS,
since it needs the execution of a shell script:

• Download the archive (release or snapshot containing the sources) from

http://uma.ensta-paris.fr/soft/XLiFE++/?module=main&action=dl

• Decompress the archive where the software is expected to be installed in the filesystem. This can be in
the user’s home or at system-wide level, in which case administrator rights will be necessary. Let’s denote
by $XLDIR the directory containing the files.

• Open a terminal and type in the command:

bash $XLDIR/etc/installLibs

This will create a single library in the $XLDIR/lib directory.

XLIFE++ may use other libraries (UMFPACK, ARPACK, LAPACK, BLAS) or third party softwares (GMSH, PARAVIEW),
depending on their presence on the computer. The script installLibs performs the installation in an auto-
matic way, without any user action. This means that these libraries or softwares are really used only if they are
detected or built.

The installation requires a C++ compiler. The C++ compiler to use can be imposed by the mean of the environ-
ment variable CPPCMP before calling the script installLibs (see details in the file $XLDIR/etc/installLibs.README).
By default, its name is g++, which is the GNU compiler generally used under Linux ; under MAC OS, this will
make use of the native compiler shipped with Xcode, but the GNU compiler may be used as well.
The FORTRAN library is needed if ARPACK is used. Thus, the name of the Fortran compiler, from which is
deduced the name of the Fortran library, can also be imposed by the mean of the environment variable FCMP.
By default, its name is gfortran.

The installation process conforms to the following rules:

1. if they are not found in the filesystem, LAPACK and BLAS are not installed, neither any third party software,

2. UMFPACK and ARPACK libraries present on the system are used first and foremost,

3. if ARPACK has not been found in the system and if a FORTRAN compiler is available, the ARPACK library is
built locally,

4. if UMFPACK has not been found in the system, SUITESPARSE libraries are built locally.

Some options may be used to alter the default configuration:
-noAmo prevents XLiFE++ to use AMOS library (computation of Bessel functions),
-noArp prevents XLiFE++ to use ARPACK library,
-noOmp prevents XLiFE++ to use OPENMP capabilities,
-noUmf prevents XLiFE++ to use UMFPACK (SUITESPARSE) libraries.

15

http://uma.ensta-paris.fr/soft/XLiFE++/?module=main&action=dl

Thus, in case of trouble, the installation script may be relaunched with one or more of these options. Using all
the options leads to the standalone installation of XLIFE++, which is perfectly allowed. The complete calling
sequence is then:

bash $XLDIR/etc/installLibs [-noAmo] [-noArp] [-noOmp] [-noUmf]

Finally, the details of the installation are recorded in the file $XLDIR/installLibs.log.

1.5.2 Compilation of a program using XLIFE++

To use XLIFE++:

1. Create a new directory to gather all the source files related to the problem to be solved.

2. In this directory, create the source files. This can be done with any text editor. One of them (only) should
be a valid "XLIFE++ main file" (see section 1.7). For example, start by copying one of the files present in
$XLDIR/examples.

3. In a terminal, change to this directory and type in the command:

$XLDIR/etc/xlmake

This will compile all the C++ source files contained in the current working directory (valid extension
are standard ones .c++, .cpp, .cc, .C, .cxx) and create the corresponding executable file, named
xlifeppexec.

4. Launch the execution of the program by typing in:

./xlifeppexec

The files produced during the execution are created in the current directory.

To improve comfort, one can make a link to the script xlmake in the working directory, as suggested
in the commentary inside the script:

ln -s $XLDIR/etc/xlmake .

or add $XLDIR/etc to the PATH environment variable. In both cases, the command typed in at step 3. above
would then reduce to:

xlmake

If OPENMP is used, it may be useful to adjust the number of threads to the problem size. Indeed,
by default all threads available are used, which may be completely counter productive for example

for a small problem size and a large number of threads. The number of threads to use can be modified
at program level, generally in the main function, or at system level, by setting the environment variable
OMP_NUM_THREADS before the execution is launched, e.g. with a Bourne shell:

export OMP_NUM_THREADS=2 ; ./xlifeppexec

or with a C shell:

setenv OMP_NUM_THREADS 2 ; ./xlifeppexec

1.6 Alternative installation and usage process, with DOCKER

This procedure allows to get a pre-installed version of the libraries which are gathered in a so-called DOCKER

container.

This first requires the installation of the DOCKER application, which can be downloaded from:

16

https://www.docker.com/products/overview

Once this is done:

• Download the XLIFE++ image (use sudo docker on linux system):

docker pull pnavaro/xlifepp

• Create a workspace directory, for example:

mkdir $HOME/my-xlifepp-project

• Run the container with interactive mode and share the directory created above with the /home/work
container directory:

docker run -it --rm -v $HOME/my-xlifepp-project:/home/work pnavaro/xlifepp

This allows the files created in the internal /home/work directory of the container to be stored in the
$HOME/my-xlifepp-project directory of the true filesystem, making them available after Docker is
stopped.

• Everything is now ready to use XLIFE++ as explained in subsection 1.5.2 above, for example:

xlifepp.sh

make

./exec-x86_64-linux-g++-5-Release

The files produced during the execution are in the directory $HOME/my-xlifepp-project shared with
running DOCKER, and are then available for postprocessing.

The DOCKER application requires WINDOWS 10, or MAC OS 10.10 and higher. For older OSes, you
have to download DOCKER TOOLBOX instead. See https://docs.docker.com/toolbox/toolbox_

install_windows/ for WINDOWS or https://docs.docker.com/toolbox/toolbox_install_mac/ for
MAC OS.

1.7 Writing a program using XLIFE++

All the XLIFE++ library is defined in the namespace xlifepp. Then the users, if they refer to library objects,
have to add once in their programs the command using namespace xlifepp;. Besides, they have to use the "super"
header file xlife++.h only in the main. A main program looks like, for instance:

#include " x l i f e ++.h"
using namespace x l i f e p p ;

int main ()
{

i n i t (_lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e ++
. . .

}

Please see chapter 5 for a full description of command line options and of the init function and a full descrip-
tion of how to manage user options.

If the users have additional source files using XLIFE++ elements, they cannot include the "super"
header file xlife++.h because of global variable definitions. Instead, they will include the "super"

header file xlife++-libs.h that includes every XLIFE++ header except the one containing the definition of
global variables.

17

https://www.docker.com/products/overview
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_mac/

1.8 License

XLIFE++ is copyright (C) 2010-2022 by E. Lunéville and N. Kielbasiewicz and is distributed under the terms of
the GNU General Public License (GPL) (Version 3 or later, see https://www.gnu.org/licenses/gpl-3.0.en.html).
This means that everyone is free to use XLIFE++ and to redistribute it on a free basis. XLIFE++ is not in the
public domain; it is copyrighted and there are restrictions on its distribution. You cannot integrate XLIFE++
(in full or in parts) in any closed-source software you plan to distribute (commercially or not). If you want to
integrate parts of XLIFE++ into a closed-source software, or want to sell a modified closed-source version of
XLIFE++, you will need to obtain a different license. Please contact us directly for more information.

The developers do not assume any responsibility in the numerical results obtained using the XLIFE++ library
and are not responsible of bugs.

1.9 Credits

The XLIFE++ library has been mainly developped by E. Lunéville and N. Kielbasiewicz of POEMS lab (UMR
7231, CNRS-ENSTA Paris-INRIA). Some parts are inherited from MELINA++ library developped by D. Martin
(IRMAR lab, Rennes University, now retired) and E. Lunéville. Other contributors are :

• Y. Lafranche (IRMAR lab), mesh tools using subdivision algorithms, wrapper to ARPACK

• C. Chambeyron (POEMS lab), iterative solvers, unitary tests, PhD students’ support

• M.H N’Guyen (POEMS lab), eigen solvers and OpenMP implementation

• N. Salles (POEMS lab), boundary element methods

• L. Pesudo (POEMS lab), boundary element methods and HF coupling

• P. Navaro (IRMAR lab), continuous integration

• E. Darrigrand-Lacarrieu (IRMAR lab), fast multipole methods

• E. Peillon (POEMS lab), evolution of (bi)linear forms

18

2 Getting started

2.1 The variational approach

Before learning in details what XLIFE++ is able to do, let us explain the basics with an example, the Helmholtz
equation:

For a given function f(x,y), find a function u(x,y) satisfying−∆u(x, y)+u(x, y) = f (x, y) ∀(x, y) ∈Ω
∂u

∂n
(x, y) = 0 ∀(x, y) ∈ ∂Ω (2.1)

To solve this problem by a finite element method, XLIFE++ is based on its variational formulation : find
u ∈ H 1(Ω) such that ∀v ∈ H 1(Ω)

∫
Ω
∇u.∇v d x d y −

∫
Ω

u v d x d y =
∫
Ω

f v d x d y. (2.2)

All the mathematical objects involved in the variational formulation are described in XLIFE++. The following
program solves the Helmholtz problem with f (x, y) = cosπx cosπy andΩ is the unit square.

1 #include " x l i f e ++.h"
2 using namespace x l i f e p p ;
3

4 Real cosxcosy (const Point& P , Parameters& pa = defaultParameters)
5 {
6 Real x=P(1) , y=P(2) ;
7 return cos (pi_ * x) * cos (pi_ * y) ;
8 }
9

10 int main(int argc , char ** argv)
11 {
12 i n i t (_lang= f r) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p
13 SquareGeo sq (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=11) ;
14 Mesh mesh2d(sq , tr iangle , 1 , structured) ;
15 Domain omega = mesh2d . domain("Omega") ;
16 Space Vk(_domain=omega, _interpolation=P1 , _name="Vk" , _optimizeNumbering) ;
17 Unknown u(Vk , "u") ;
18 TestFunction v (u , "v") ;
19 BilinearForm auv = intg (omega, grad (u) | grad (v)) + intg (omega, u * v) ;
20 LinearForm fv=intg (omega, cosxcosy * v) ;
21 TermMatrix A(auv , "a (u , v) ") ;
22 TermVector B(fv , " f (v) ") ;
23 TermVector X0(u , omega, 1 . , "X0") ;
24 TermVector U = cgSolve (A , B, X0 , _name="U") ;
25 saveToFile ("U" , U, vtu) ;
26 return 0 ;
27 }

Please notice how close to the Mathematics, XLIFE++ input language is.

19

2.2 How does it work ?

This first example shows how XLIFE++ executes all the usual steps required by the Finite Element Method. Let
us walk through them one by one.

line 12 : Every program using XLIFE++ begins by a call to the init function, taking up to 4 key/value arguments
but only 2 are relevant for users:

_verbose integer to set the verbose level. Default value is 1.

_lang enum to set the language for print and log messages. Possible values are en for English, fr for
French, de for German, or es for Spanish. Default value is en.

Furthermore, the init function loads functionalities linked to the trace of where such messages come from.
If this function is not called, XLIFE++ cannot work !!!

i n i t (_lang= f r) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p

See chapter 5 to learn how to define command line options or options files specific to your program and
how to use them.

lines 13-14 : The mesh will be generated on the unit square geometry with 11 nodes per edge. Arguments of a
geometry are given with a key/value system. _origin is the bottom left front vertex of SquareGeo. Next,
we precise the mesh element type (here triangle), the mesh element order (here 1), the mesh tool (here
structured). The main mesh tool are ’structured’ for simple geometries (rectangle, cube, ...) and ’gmsh’ for
general geometries. See chapter 6 for more examples of mesh definitions.

SquareGeo sq (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=11) ;
Mesh mesh2d(sq , tr iangle , 1 , structured) ;

line 15 : The main domain, named "Omega" in the mesh, is defined.

Domain omega = mesh2d . domain("Omega") ;

line 16 : A finite element space is generally a space of polynomial functions on elements, triangles here only.
Here sp is defined as the space of continuous functions which are affine on each triangle Tk of the domain
Ω, usually named Vh . The dimension of such a space is finite, so we can define a basis.

sp(Ω,P1) =
{

w(x, y) such that ∃(w1, . . . , wN) ∈RN , w(x, y) =
N∑

i=1
wkϕk (x, y)

}

where N is the space dimension, i.e. the number of nodes (the number of vertices here).

Currently, XLIFE++ implements the following elements : Pk on segment, triangle and tetrahedron, Qk on
quadrangle and hexahedron, Ok on prism and pyramid (see section 6.4 for more details).

Space Vk(_domain=omega, _interpolation=P1 , _name="Vk" , _optimizeNumbering) ;

lines 17-20 : The unknown u here is an approximation of the solution of the problem. v is declared as test
function. This comes from the variational formulation of Equation 2.1 : multiplying both sides of equation
and integrating overΩ, we obtain :

−
∫
Ω

v∆ud xd y +
∫
Ω

vud xd y =
∫
Ω

v f d xd y

Then, using Green’s formula, the problem is converted into finding u such that :

a(u, v) =
∫
Ω
∇u ·∇vd xd y +

∫
Ω

uvd xd y =
∫
Ω

f vd xd y = l (v) (2.3)

The 4 next lines in the program declare u and v and define the forms a and l .

20

Unknown u(Vk , "u") ;
TestFunction v (u , "v") ;
BilinearForm auv = intg (omega, grad (u) | grad (v)) + intg (omega, u * v) ;
LinearForm fv=intg (omega, cosxcosy * v) ;

Please notice that:

• the test function is defined from the unknown. The reason is that the test function is dual to the
unknown. Through the unknown, v is also defined on the same space.

• the right hand side needs the definition of the function f . Such function can be defined as a classical
C++ function, but with a particular prototype. In this example, f (i.e. cosxcos y) is a scalar function.
So it takes 2 arguments : the first one is a Point, containing coordinates x and y . The second one is
optional and contains parameters to use inside the function. Here, the Parameters object is not
used. At last, as a scalar function, it returns a Real but it should be a Complex or a real/complex
vector (Reals, Complexes).

Real cosxcosy (const Point& P , Parameters& pa = defaultParameters)
{

Real x=P(1) , y=P(2) ;
return cos (pi_ * x) * cos (pi_ * y) ;

}

lines 21-22 : The previous definitions are a description of the variational form. Now, we have to build the
matrix and the right-hand side vector which are the algebraic representations of the linear forms in the
finite element space. This is done by the first 2 following lines.

TermMatrix A(auv , "a (u , v) ") ;
TermVector B(fv , " f (v) ") ;

lines 23-24 : Once Matrix and vector being assembled, you can now choose the solver you want. Here, a
conjugate gradient solver is used with an initial guess vector equal to the constant vector 1.

XLIFE++ offers you a various choice of direct or iterative solvers :

• LU , LDU , LLt , LDLt , LDL∗ factorizations

• BICG, BiCGStab, CG, CGS, GMRES, QMR, Sor, SSor, solvers

• internal eigen solver

• interfaces to external packages such as UMFPACK, ARPACK

See chapter 8 for more details.

TermVector X0(u , omega, 1 . , "X0") ;
TermVector U = cgSolve (A , B, X0 , _name="U") ;

line 25 : To save the solution, XLIFE++ provides an export to Paraview format file (vtu).

saveToFile ("U" , U, vtu) ;

line 26 : This is the end of the program. A "main" function always ends with this line.

return 0 ;

21

3 Examples

3.1 1D problems

Solving 1D problems is sometimes regarded to be out of interest. Anyway, most of existing FE softwares do
not handle this case. But in fact, 1D problems are of interest, often as a part of more complex problems. Thus,
XLIFE++ deals with 1D problems.

3.1.1 Dirichlet condition

As a first example, we show how to solve the very simple problem, involving Dirichlet conditions:{
−u′′ = f inΩ=]0,1[

u(0) = u(1) = 0

Its variational formulation is∣∣∣∣∣∣
Find u ∈V = {

v ∈ L2(Ω), v ′ ∈ L2(Ω), u(0) = u(1) = 0
}

such that∫ 1

0
u′(x) v ′(x)d x =

∫ 1

0
f (x) v(x)d x ∀v ∈V.

The following main program corresponds to solving this problem with f (x) = 1 using P1 Lagrange element (100
elements):

#include " x l i f e ++.h"
using namespace x l i f e p p ;

Real f (const Point& P , Parameters& pa = defaultParameters)
{ return − 1 . ; }

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p

/ / mesh and domains
Strings sn ("x=0" , "x=1") ;
Segment seg (_xmin=0 , _xmax=1 , _nnodes=101 , _domain_name="Omega" , _side_names=sn) ;
Mesh mesh1d(seg , 1 , structured , "P1−mesh") ;
Domain omega = mesh1d . domain("Omega") ;
Domain sigmaL = mesh1d . domain("x=0") , sigmaR = mesh1d . domain("x=1") ;

/ / space , unknows , and t e s t functions
Space Vh(_domain=omega, _interpolation=P1 , _name="Vh") ;
Unknown u(Vh, "u") ;
TestFunction v (u , "v") ;

/ / define problem
BilinearForm a = intg (omega, grad (u) | grad (v)) ;
LinearForm l f = intg (omega, f * v) ;
EssentialConditions ecs = (u | sigmaL = 0) & (u | sigmaR = 0) ;

/ / compute matrix and rhs
TermMatrix A(a , ecs , "A") ;

22

TermVector F(l f , "F") ;

/ / s o l ve l i ne ar system and save solution
TermVector U=directSolve (A , F) ;
saveToFile ("U_1d" , U, vtu) ;
return 0 ;

}

The following figure shows a graphical representation of the solution using PARAVIEW:

Figure 3.1: Solution of the Laplace 1D problem on the unit segment [0,1]

3.1.2 Robin condition

The second example shows that XLIFE++ can also handle non homogeneous Neumann conditions or Robin-
Fourier conditions. This problem also involve a Dirichlet condition. Given three real functions fΩ, α and fN ,
the problem is: 

−u′′+u = fΩ inΩ=]a,b[

u(a) = 0

u′(b)+α(b)u(b) = fN (b)

Its variational formulation is:∣∣∣∣∣∣
Find u ∈V = {

v ∈ L2(Ω), v ′ ∈ L2(Ω), u(a) = 0
}

such that∫ b

a
u′(x) v ′(x)d x +

∫ b

a
u(x) v(x)d x +α(b)u(b) =

∫ b

a
f (x) v(x)d x + fN (b), ∀v ∈V.

α(b)u(b) can be interpreted as
∫

{b}
α(γ)u(γ) v(γ)dγ and fN (b) can be interpreted as

∫
{b}

fN (γ) v(γ)dγ where γ is

the variable over the side domain here reduced to a point. This allows to handle these conditions in a uniform
syntactic way by defining linear forms as shown in the previous examples.

The following main program corresponds to solving this problem with α(x) = 7

2
x2 − 8x using the P10 La-

grange element over the interval]a,b[=
]

0,
13

4
π

[
using 4 elements ; the functions fΩ(x) = 2 si n(x) and

fN (x) = cos(x)+α(x) si n(x) are chosen so that the solution is si n(x):

#include " x l i f e ++.h"
using namespace x l i f e p p ;

/ *

23

Test problem :
−u" + u = fOm on the domain Om = [a , b]

u(a) = 0
u ' (b) + alpha (b) u(b) = fN (b)

* /

Real fctEx (const Point& P , Parameters& pa = defaultParameters)
{ return sin (P [0]) ; }

Real fctOm (const Point& P , Parameters& pa = defaultParameters)
{ return 2 * sin (P [0]) ; }

Real alpha (const Point& P , Parameters& pa = defaultParameters)
{ return 3.5*P [0] * P [0] − 8*P [0] ; }

Real fctfN (const Point& P , Parameters& pa = defaultParameters)
{ return cos (P [0]) + (3 . 5 * P [0] * P [0] − 8*P [0]) * sin (P [0]) ; }

int main(int argc , char ** argv) {
i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p

/ / Mesh and domains
Strings sidenames ("x=a" , "x=b") ;
Segment seg (_xmin=0. , _xmax=3.25* pi_ , _nnodes=5 , _domain_name="Omega" , _side_names=sidenames) ;
Mesh mesh1d(seg , 1 , structured) ;
mesh1d . printInfo () ;
Domain Omega = mesh1d . domain("Omega") ;
Domain xA = mesh1d . domain("x=a") ;
Domain xB = mesh1d . domain("x=b") ;

/ / Space and unknowns
Space Vh(_domain=Omega, _FE_type=Lagrange , _order =10 , _name="Vh") ;
Unknown u(Vh, "u") ;
TestFunction v (u , "v") ;

/ / Bi l inear forms
BilinearForm gugv = intg (Omega, grad (u) | grad (v)) , uv = intg (Omega, u* v) ;
BilinearForm aluv = intg (xB , alpha *u* v) ;
LinearForm fOm = intg (Omega, fctOm* v) , fN = intg (xB , fctfN * v) ;

/ / Terms with e s s e n t i a l conditions
EssentialConditions ecs = (u | xA = 0) ;
TermMatrix A(gugv + uv + aluv , ecs , "A") ;
TermVector F(fOm + fN , "F") ;

/ / Solve l i ne ar system and save solution
TermVector U = directSolve (A , F) ;
saveToFile ("U" , U, matlab) ;

/ / Compare with exact solution
TermVector Uex(u , Omega, fctEx , "Uex") ;
theCout << " | | U−Uex | | i n f = " << norminfty (U−Uex) << eol ;
return 0 ;

}

The following figure shows a graphical representation of the solution using OCTAVE (see section 9.3):

24

Figure 3.2: Solution of the Laplace 1D problem with Dirichlet and Robin conditions

The left figure shows the interpolation nodes which form a uniform distribution of points. This is the default
behavior.

Comparing the exact solution Uex with the computed one U , at the interpolation abscissae, leads to ||U −
Uex ||∞ = 4.44278×10−10, value which is currently printed by the program.
By adding _FE_subtype=GaussLobatto to the Space constructor, one can toggle to the Gauss-Lobatto abscissae
which are more suitable with higher interpolation degrees. With this example, choosing these abscissae leads to
a better approximation: we then get ||U −Uex ||∞ = 2.55367×10−11.

3.2 Laplace Problems

We investigate here problems involving laplacian operator in a 2D bounded domain, sayΩ :

−∆u +a u = f inΩ (a =−k2 for Helmholtz equation)

and various essential conditions (Dirichlet, transmission, quasi periodic, average condition).

3.2.1 Neumann condition

First, let us consider the case of the homogeneous Neumann condition on ∂Ω, the boundary ofΩ:

∂u

∂n
= 0 on ∂Ω.

The variational formulation we deal with is∣∣∣∣∣∣
find u ∈V = {

v ∈ L2(Ω), ∇v ∈ (L2(Ω))2
}

such that∫
Ω
∇u.∇v +a

∫
Ω

u v =
∫
Ω

f v ∀v ∈V.

The following main program corresponds to solving this problem on unity squareΩ=]0,1[×]0,1[with f (x) =
cosπx cosπy using P1 Lagrange element (20x20 elements):

#include " x l i f e ++.h"
using namespace x l i f e p p ;

Real cosx2 (const Point& P , Parameters& pa = defaultParameters)
{

Real x=P(1) , y=P(2) ;
return cos (pi_ * x) * cos (pi_ * y) ;

25

}

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ;

/ / mesh square
SquareGeo sq (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=21) ;
Mesh mesh2d(sq , tr iangle , 1 , structured) ;
Domain omega = mesh2d . domain("Omega") ;

/ / build space and unknown
Space Vk(_domain=omega, _interpolation=P1 , _name="Vk") ;
Unknown u(Vk , "u") ;
TestFunction v (u , "v") ;

/ / define variational formulation
BilinearForm auv = intg (omega, grad (u) | grad (v)) + intg (omega, u * v) ;
LinearForm fv=intg (omega, cosx2 * v) ;

/ / compute matrix and r i g h t hand side
TermMatrix A(auv , "a (u , v) ") ;
TermVector B(fv , " f (v) ") ;

/ / LLt f a c t o r i z e and sol ve
TermMatrix LD;
l d l t F a c t o r i z e (A , LD) ;
TermVector U = factSolve (LD, B) ;

saveToFile ("U_LN" , U, vtu) ;
return 0 ;

}

Figure 3.3: Solution of the Laplace 2D problem with Neumann condition on the square [0,1]2

Solving this problem with P2 Lagrange interpolation should be the same except the line defining the space:

Space Vh(_domain=omega, _interpolation=P2 , _name="Vh" , _optimizeNumbering) ;

Solving this problem in a 3D domain should be the same except the line defining the mesh and the right hand
side function. For instance, on the unity cube, the mesh construction command using GMSH tool is:

Real f (const Point& P , Parameters& pa = defaultParameters)
{

Real x=P(1) , y=P(2) , z=P(3) ;

26

return cos (pi * x) * cos (pi * y) * cos (pi * z) ;
}
. . .

Mesh mesh(Cube(_origin=Point (0 . , 0 . , 0 .) , _length =1 , _nnodes=10) , tetrahedron , 1 , _gmsh , "P1 mesh") ;
. . .

Figure 3.4: Solution of the Laplace 3D problem with Neumann condition on the unit cube [0,1]3

3.2.2 Dirichlet condition

Let us consider now the case of non homogeneous Dirichlet condition on the boundaries x = 0 (Σ−) and x = 1
(Σ+):

u = 1 on Σ−∪Σ+.

The variational formulation is now (a = 0)∣∣∣∣∣∣∣∣
find u ∈V = {

v ∈ L2(Ω),∇v ∈ (L2(Ω))2
}

such that∫
Ω
∇u.∇v =

∫
Ω

f v ∀v ∈V , v = 0 on Σ−∪Σ+

u = 1 on Σ−∪Σ+

Its approximation by P1 Lagrange finite element is implemented in XLIFE++ as follows:

#include " x l i f e ++.h"
using namespace x l i f e p p ;

Real f (const Point& P , Parameters& pa = defaultParameters)
{ return − 8 . ; }

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p

/ / c r e a t e mesh of square
Strings sn ("y=0" , "x=1" , "y=1" , "x=0") ;
SquareGeo sq (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=20 , _domain_name="Omega" ,

_side_names=sn) ;
Mesh mesh2d(sq , tr iangle , 1 , structured) ;
Domain omega=mesh2d . domain("Omega") ;
Domain sigmaM=mesh2d . domain("x=0") , sigmaP=mesh2d . domain("x=1") ;

/ / c r e a t e interpolation

27

Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u") ;
TestFunction v (u , "v") ;

/ / c r e a t e b i l i n e a r form , l in ear form and t h e i r algebraic representation
BilinearForm auv=intg (omega, grad (u) | grad (v)) ;
LinearForm fv=intg (omega, f * v) ;
EssentialConditions ecs= (u | sigmaM = 1) & (u | sigmaP = 1) ;
TermMatrix A(auv , ecs , "A") ;
TermVector B(fv , "B") ;

/ / s o l ve l i ne ar system AX=B
TermVector U=directSolve (A , B) ;
saveToFile ("U_LD" , U, vtu) ;
return 0 ;

}

Figure 3.5: Solution of the Laplace 2D problem with Dirichlet condition on the unit square [0,1]2

Note how easy is to take into account essential conditions. Only two lines has to be modified!

3.2.3 Periodic condition

Now we consider the Laplace problem on the unit squareΩ=]0,1[×]0,1[equipped with Dirichlet condition on
and periodic condition: 

−∆u = f inΩ

u|Γ− = 0 and u|Γ+ = 0

u|Σ− = u|Σ+ and ∂x u|Σ− = ∂x u|Σ+

and its variational formulation in V = {v ∈ H 1(Ω), u|Γ = 0 and u|Σ− = u|Σ+}:∣∣∣∣∣∣
find u ∈V such that∫

Ω
∇u.∇v =

∫
Ω

f v ∀v ∈V.

Its approximation by P 2 Lagrange finite element is implemented in XLIFE++ as follows:

28

#include " x l i f e ++.h"
using namespace x l i f e p p ;

Real f (const Point& P , Parameters& pa = defaultParameters)
{

Real x=P(1) , y=P(2) ;
return (4* pi_ * pi_ * y * (y −1) −2) * sin (2* pi_ * x) ;

}

Vector<Real> mapPM(const Point& P , Parameters& pa = defaultParameters)
{

Vector<Real> Q(P) ;
Q(1) −=1;
return Q;

}

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p

/ / mesh square
Strings sn ("y=0" , "x=1" , "y=1" , "x=0") ;
SquareGeo sq (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=20 , _domain_name="Omega" ,

_side_names=sn) ;
Mesh mesh2d(sq , tr iangle , 1 , structured) ;
Domain omega=mesh2d . domain("Omega") ;
Domain sigmaM=mesh2d . domain("x=0") , sigmaP=mesh2d . domain("x=1") ;
Domain gammaM=mesh2d . domain("y=0") , gammaP=mesh2d . domain("y=1") ;
defineMap (sigmaP , sigmaM, mapPM) ; / / useful to periodic condition

/ / c r e a t e P2 Lagrange interpolation
Space V(_domain=omega, _interpolation=P2 , _name="V") ;
Unknown u(V , "u") ;
TestFunction v (u , "v") ;

/ / c r e a t e b i l i n e a r form and l in ear form
BilinearForm auv=intg (omega, grad (u) | grad (v)) ;
LinearForm fv=intg (omega, f * v) ;
EssentialConditions ecs = (u |gammaM = 0) & (u |gammaP = 0)

& ((u | sigmaP) − (u | sigmaM) = 0) ; / / EssentialConditions ecs
TermMatrix A(auv , ecs , "A") ;
TermVector B(fv , "B") ;

/ / s o l ve l i ne ar system AX=F using f a c t o r i z a t i o n
TermVector U=directSolve (A , B) ;
saveToFile ("U_LP" , U, vtu) ;

/ / Solving eigen problem intg (omega , grad (u) | grad (v)) =lambda intg (omega , u* v) with ecs
BilinearForm uv=intg (omega, u* v) ;
TermMatrix Ae(auv , ecs , ReductionMethod (_pseudoReduction , 0 . , 1000.) , "Ae") ;
TermMatrix Me(uv , ecs , ReductionMethod (_pseudoReduction , 0 . , 1 .) , "Me") ;
EigenElements eigs=eigenSolve (Ae , Me, _nev=10 , _which="SM") ;
Complex l 1 =eigs . value (1) ; / / f i r s t eigen value
TermVector e1=eigs . vector (1) ; / / f i r s t eigen vector , " eliminated " components are not up to

date
e1 . applyEssentialConditions (ecs) ; / / update " eliminated " components of e1
eigs . applyEssentialConditions (ecs) ; / / update " eliminated " components of a l l eigen v e c t o r s

return 0 ;
}

Note that at corners, periodic condition and Dirichlet condition are redundant. When executing, the following

29

warning message is thrown

Constraints::reduceConstraints() : in essential conditions
Dirichlet condition u = 0 on y=0
Dirichlet condition u = 0 on y=1
periodic condition u|x=1 - u|x=0 = 0

2 redundant constraint row(s) detected and eliminated

Figure 3.6: Solution of the Laplace 2D problem with periodic condition on the unit square [0,1]2

3.2.4 Transmission condition

We turn to the Laplace problem with transmission condition:
−∆u− = f inΩ−

−∆u+ = f inΩ+

u|Σ− = 1 and u|Σ+ = 1

u−
|Γ = u+

|Γ and ∂x u−
|Γ = ∂x u+

|Γ
Its variational formulation in

V = {(v−, v+) ∈ H 1(Ω−)×H 1(Ω+), v−
|Σ− = 0, v+

|Σ− = 0, v−
|Γ = v+

|Γ}

is ∣∣∣∣∣∣
find (u−,u+) ∈ H 1(Ω−)×H 1(Ω+),u−

|Σ− = 1,u+
|Σ− = 1, u−

|Γ = u+
|Γ such that∫

Ω−
∇u−.∇v−+

∫
Ω+

∇u+.∇v+ =
∫
Ω−

f v−+
∫
Ω+

f v+ ∀v ∈V.

30

Note that derivatives matching is taken into account in a weak sense. The implementation in XLIFE++, using
P 2 Lagrange finite element, looks like:

#include " x l i f e ++.h"
using namespace x l i f e p p ;

Real f (const Point& P , Parameters& pa = defaultParameters)
{

return −8. ;
}

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p

/ / mesh domain
Strings sn (4) ;
sn [1] = "x=1/2−" ; sn [3] = "x=0" ;
Rectangle r1 (_xmin=0 , _xmax=0.5 , _ymin=0 , _ymax=1 , _nnodes=Numbers(20 , 40) ,

_domain_name="Omega−" , _side_names=sn) ;
Mesh mesh2d(r1 , tr iangle , 1 , _structured) ;
sn [1] = "x=1" ; sn [3] = "x=1/2+" ;
Rectangle r2 (_xmin=0.5 , _xmax=1 , _ymin=0 , _ymax=1 , _nnodes=Numbers(20 , 40) ,

_domain_name="Omega+" , _side_names=sn) ;
Mesh mesh2d_p(r2 , tr iangle , 1 , structured) ;
mesh2d . merge(mesh2d_p) ;
Domain omegaM=mesh2d . domain("Omega−") , omegaP=mesh2d . domain("Omega+") ;
Domain sigmaM=mesh2d . domain("x=0") , sigmaP=mesh2d . domain("x=1") ;
Domain gamma=mesh2d . domain("x=1/2− or x=1/2+") ;

/ / c r e a t e P2 interpolation
Space VM(_domain=omegaM, _interpolation=P2 , _name="VM") ;
Unknown uM(VM, "u−") ;
TestFunction vM(uM, "v−") ;
Space VP(_domain=omegaP, _interpolation=P2 , _name="VP") ;
Unknown uP(VP, "u+") ;
TestFunction vP (uP , "v+") ;

/ / c r e a t e b i l i n e a r form and l in ear form
BilinearForm auv=intg (omegaM, grad (uM) | grad (vM)) +intg (omegaP, grad (uP) | grad (vP)) ;
LinearForm fv=intg (omegaM, f *vM) +intg (omegaP, f *vP) ;
EssentialConditions ecs= (uM| sigmaM = 1) & (uP | sigmaP = 1) & ((uM|gamma) − (uP |gamma) = 0) ;
TermMatrix A(auv , ecs , "A") ;
TermVector B(fv , "B") ;

/ / s o l ve l i ne ar system AX=B using LU f a c t o r i z a t i o n
TermVector U=directSolve (A , B) ;
saveToFile ("U_LT" , U, vtu) ;
return 0 ;

}

Here, a tool merging mesh is used to create a two domains mesh. GMSH should be used also. The picture below
shows that the solution is continuous across the boundary Γ.

31

Figure 3.7: Solution of the Laplace 2D problem with transmission condition on the unit square [0,1]2

3.2.5 Average condition

As a last example of essential condition, we consider average condition, for instance:∫
Σ

u = 0.

Such condition is tricky to take into account in FE softwares. Generally, they do not! Because XLIFE++ uses a
powerful process to deal with essential conditions, such condition can be easily adressed:

#include " x l i f e ++.h"
using namespace x l i f e p p ;

Real f (const Point& P , Parameters& pa = defaultParameters)
{ return − 8 . ; }

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p

/ / c r e a t e a mesh and Domains
SquareGeo sq (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=10 , _domain_name="Omega" ,

_side_names=Strings ("y=0" , "x=1" , "y=1" , "x=0")) ;
Mesh mesh2d(sq , tr iangle , 1 , structured) ;
Domain omega=mesh2d . domain("Omega") ;
Domain sigmaM=mesh2d . domain("x=0") , sigmaP=mesh2d . domain("x=1") ;

/ / c r e a t e interpolation
Space V(_domain=omega, _interpolation=P2 , _name"V") ;
Unknown u(V , "u") ;
TestFunction v (u , "v") ;

/ / c r e a t e b i l i n e a r form and l in ear form
BilinearForm auv=intg (omega, grad (u) | grad (v)) ;
LinearForm fv=intg (omega, f * v) ;
EssentialConditions ecs= (intg (sigmaM, u) = 0) ;
TermMatrix A(auv , ecs , "A") ;
TermVector F(fv , "B") ;

/ / s o l ve l i ne ar system AX=F using LU f a c t o r i z a t i o n
TermVector U=directSolve (A , F) ;

32

saveToFile ("U_LA" , U, vtu) ;
return 0 ;

}

Figure 3.8: Solution of the Laplace 2D problem with average condition on the unit square [0,1]2

Beware of some average conditions. For instance, when adding the "full" average condition∫
Ω

u = 0

the resulting reduced matrix is a full matrix. So, the problem is bigger and slower to solve!

3.3 Discontinuous Galerkin method for 2D Dirichlet problem

Consider the Laplace problem with homogeneous Dirichlet condition:{
−∆u = f inΩ

u = 0 on ∂Ω

Consider a discontinuous Galerkin space Vh , e.g. discontinuous P 1-Lagrange space and let introduce the IP
(Interior Penalty) formulation:∣∣∣∣∣∣

find uh ∈Vh such that∫
Ω
∇huh .∇h v −

∫
Γ

{∇huh .n
}[

v
]−∫

Γ

[
uh

]{∇h v.n
}+∫

Γ
µ
[
uh

][
v
]= ∫

Ω
f v ∀v ∈Vh .

where Ω = ⋃
Tℓ, Γ = ⋃

∂Tℓ (the set of all sides of mesh elements) and, Sk,ℓ denoting the side shared by the
elements Tk and Tℓ: {

v
}
|Skℓ

= 1

2

(
(v|Tk)|Skℓ + (v|Tℓ)|Skℓ

) [
v
]
|Skℓ

= (
(v|Tk)|Skℓ − (v|Tℓ)|Skℓ

)
.

For a non shared side Sk , we set {
v
}
|Sk

= [
v
]
|Sk

= (v|Tk)|Sk .

The operators {.} and [.] are implemented in XLIFE++ as mean(.) and jump(.) operators. The normal vector n
is chosen as the outward normal from Tk on side Skℓ; in practice outward from the "first" parent element of
the side. µ is a penalty function usually chosen to be proportional to the inverse of the measure of the side Skℓ.
Note that the Dirichlet boundary condition is a natural condition in this formulation.

33

To deal with a such formulation, the following objects have to be constructed from a geometrical domain, say
omega :

• a FE space specifying L2 conformity (discontinuous space) defined on omega

• the geometrical domain Gamma of sides of omega using the function sides(omega)

• the bilinear form related to IP formulation and involving mean(.) and jump(.) operators

The XLIFE++ implementation of this problem using discontinuous P1-Lagrange is the following:

#include " x l i f e ++.h"
using namespace x l i f e p p ;

Real uex (const Point& p , Parameters& pars=defaultParameters)
{ return sin (pi_ *p(1)) * sin (pi_ *p(2)) ; }
Real f (const Point& p , Parameters& pars=defaultParameters)
{ return 2* pi_ * pi_ * sin (pi_ *p(1)) * sin (pi_ *p(2)) ; }
Real fmu(const Point& p , Parameters& pars=defaultParameters)
{GeomElement* g e l t =getElementP () ;

i f (g e l t ! = 0) return 1/ gelt −>measure () ;
return 0 . ;

}

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p
/ / c r e a t e mesh and geometrical domains
Rectangle R(_origin=Point (0 . , 0 .) , _xlength =1. , _ylength =1. , _nnodes=31 ,_domain_name="Omega") ;
Mesh mR(R, _tr iangle , 1 , _structured , _ a l t e r n a t e S p l i t) ;
Domain omega=mR. domain("Omega") ;
Domain gamma=sides (omega) ; / / c r e a t e domain of s i d e s
/ / c r e a t e discontinuous P1−Lagrange space
Interpolation in (Lagrange , standard , 1 , L2) ;
Space V(omega, in , "V") ;
Unknown u(V , "u") ; TestFunction v (u , "v") ;
/ / c r e a t e b i l i n e a r form and TermMatrix
Function mu(fmu) ; mu. require ("element") ;
BilinearForm a=intg (omega, grad (u) | grad (v)) −intg (gamma,mean(grad (u) | _n) *jump(v))

−intg (gamma, jump(u) *mean(grad (v) | _n)) +intg (gamma,mu*jump(u) *jump(v)) ;
TermMatrix A(a , "A") ;
/ / c r e a t e the r i g h t hand side an sol ve the l i ne ar system
TermVector F(intg (omega, f * v) , "F") ;
U=directSolve (A , F) ;
saveToFile ("U" ,U, _vtu) ;
/ / compute L2 e rror
TermMatrix M(intg (omega, u* v) , "M") ;
TermVector Uex(u , omega, uex) ;
TermVector E=U−Uex ;
theCout<<" IP : |U−uex | L2 = "<<sqrt (M*E | E) <<eol ;
return 0 ;

}

The L2 error is about 0.00317 for 5400 dofs. Using Paraview with the Warp by scalar filter that produces elevation,
the approximated field u looks like:

34

Figure 3.9: Solution of the 2D Dirichlet problem on the unit square [0,1]2 with discontinuous P1-Lagrange
elements, IP formulation (left) and NIPG formulation (right)

It can be noticed that the field is discontinuous and major errors is located on the corners. NIPG formulation is
an other penalty method corresponding to the bilinear form:∫

Ω
∇huh .∇h v −

∫
Γ

{∇huh .n
}[

v
]+∫

Γ

[
uh

]{∇h v.n
}+∫

Γ
µ
[
uh

][
v
]

that is close to the IP formulation but non symmetric. For NIPG, the L2 error is weaker (about 0.00141) and the
solution is less polluted at the corners.

3.4 Mixed formulation using P0 and Raviart-Thomas elements

Consider the Laplace problem with homogeneous Dirichlet condition:{
−∆u = f inΩ

u = 0 on ∂Ω

Introducing p =∇u, it is rewritten as a mixed problem in (u, p):
−div p = f inΩ

p =∇u inΩ

u = 0 on ∂Ω

with the following variational formulation:∣∣∣∣∣∣∣∣∣∣
find (u, p) ∈ L2(Ω)×H(di v,Ω) such that

−
∫
Ω

div p v =
∫
Ω

f v ∀v ∈ L2(Ω)∫
Ω

u div q +
∫
Ω

p.q = 0 ∀q ∈ H(di v,Ω).

Note that the Dirichlet boundary condition is a natural condition in this formulation.

The XLIFE++ implementation of this problem using P0 approximation for L2(Ω) and an approximation of
H(di v,Ω) using Raviart-Thomas elements of order 1 is the following:

35

#include " x l i f e ++.h"
using namespace x l i f e p p ;

Real f (const Point& P , Parameters& pa = defaultParameters)
{ Real x=P(1) , y=P(2) ;

return 32*(x *(1 − x) +y*(1 −y)) ; }

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ;
/ / mesh square
SquareGeo sq (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=21) ;
Mesh mesh2d(sq , tr iangle , 1 , structured) ;
Domain omega=mesh2d . domain("Omega") ;
/ / c r e a t e approximation P0 and RT1
Space H(_domain=omega, _interpolation=P0 , _name="H" , _notOptimizeNumbering) ;
Space V(_domain=omega, _FE_type=RaviartThomas , _order =1 , _name="V") ;
Unknown p(V , "p") ;
TestFunction q(p , "q") ; / / p=grad (u)
Unknown u(H, "u") ;
TestFunction v (u , "v") ;
/ / c r e a t e problem (Poisson problem)
TermMatrix A(intg (omega, p | q) + intg (omega, u* div (q)) − intg (omega, div (p) * v)) ;
TermVector b(intg (omega, f * v)) ;
/ / s o l ve and save solution
TermVector X=directSolve (A , b) ;
saveToFile ("u" , X(u) , vtu) ;
return 0 ;

}

Using Paraview with the Cell data to point data filter that moves P0 data to P1 data and the Warp by scalar filter
that produces elevation, the approximated field u looks like:

Figure 3.10: Solution of the Laplace 2D problem with mixed formulation P0-RT1 on the unit square [0,1]2

3.5 Fictitious domain method

A well-known method to avoid some complex meshes consists in using the ficticious domain method where the
boundary condition on an inside obstacle is taken into account by a Lagrange multiplier. To illustrate it, we
consider the following 2D Laplace problem in the domainΩ=C \B(O,R)with C =]0,1[×]0,1[the unit square,
B(O,R) the ball with center C and radius R such that B ⊂C :

36


−∆u = f inΩ

u = 0 on ∂C =Σ
u = g on ∂B = Γ

Let us introduce the minimization problem:

min
ṽ∈Ṽ (g)

1

2

∫
C
|∇Ṽ |2 −

∫
C

f̃ ṽ

where

Ṽ (g) = {
ṽ ∈ H 1(C), ṽ|Σ = 0 and ṽ|Γ = g

}
and f̃ =

{
f inΩ

0 in B
.

It has a unique solution ũ ∈ Ṽ (g) such that ũ = u onΩ and there exists p ∈ H− 1
2 (Γ) such that

∫
C
∇ũ.∇ṽ −

∫
Γ

p ṽ =
∫

C
f̃ ṽ ∀ṽ ∈ H 1

0 (C)∫
Γ

ũ q =
∫
Γ

g q ∀q ∈ H− 1
2 (Γ),

where the integrals on Γ are to be understood as the duality product on H− 1
2 (Γ)×H

1
2 (Γ).

The key idea of ficticious domain method is to use two different meshes for C and Γ. As a consequence, the
computation of integrals on Γ involves shape functions that lie on two different meshes, inducing interpolation
operations from one mesh to the other one. XLIFE++ manages this interpolation operations in an hidden way
for the user:

#include " x l i f e ++.h"
using namespace x l i f e p p ;

Real R ;

Real f (const Point& P , Parameters& pa = defaultParameters)
{ i f (norm(P) <=R) return 0 . ;

return 2* pi_ * pi_ * sin (pi_ *P(1)) * sin (pi_ *P(2)) ; }
Real g (const Point& P , Parameters& pa = defaultParameters)
{ return sin (pi_ *P(1)) * sin (pi_ *P(2)) ; }

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p
<<<<<<< HEAD

/ / c r e a t e meshes (rectangle and c i r c l e)
=======

/ / c r e a t e meshes (rectangle and c i r c l e)
>>>>>>> space_keyvalues

R= 0 . 2 ;
SquareGeo sq (_xmin =0 , _xmax = 1 , _ymin = 0 , _ymax = 1 ,

37

_hsteps =0.05 ,
_domain_name = "Omega" , _side_names="Sigma") ;

Disk c i r c l e (_center=Point (0 . 5 , 0 . 5) , _radius =R, _hsteps =0.05 ,
_domain_name = "Gamma") ;

<<<<<<< HEAD
Mesh meshR(rectangle , _ t r i a n g l e) ;
Mesh meshG(c i r c l e , _segment , 1 , gmsh) ;
Domain rect = meshR. domain("Omega") ,

sigmat = meshR. domain("Sigma") ,
gammat = meshG. domain("Gamma") ;

/ / c r e a t e spaces and unknowns
Space Vt (rect , P1 , " Vt ") ; Unknown ut (Vt , " ut ") ; TestFunction vt (ut , " vt ") ;
Space W(gammat, P0 , "W") ; Unknown p(W, "p") ; TestFunction q(p , "q") ;
/ / c r e a t e b i l i n e a r forms and Terms
BilinearForm at = intg (rect , grad (ut) | grad (vt)) −intg (gammat, p* vt)

− intg (gammat, ut *q) ;
BoundaryConditions bcst = (ut | sigmat =0) ;
TermMatrix At (at , bcst , " At ") ;
TermVector Ft (intg (rect , f * vt) −intg (gammat, g*q) , " Ft ") ;
/ / s o l ve l i ne ar system and save the solution to a vtu f i l e
TermVector Ut = directSolve (At , Ft) ;
saveToFile ("Ut" ,Ut , _vtu) ;

=======
Mesh meshS(sq , t r i a n g l e) ;
Mesh meshG(c i r c l e , segment , 1 , gmsh) ;
Domain omega = meshS . domain("Omega") ,

sigmat = meshS . domain("Sigma") ,
gammat = meshG. domain("Gamma") ;

/ / c r e a t e spaces and unknowns
Space Vt (_domain=omega, _interpolation=P1 , _name=" Vt ") ;
Unknown ut (Vt , " ut ") ; TestFunction vt (ut , " vt ") ;
Space W(_domain=gammat, _interpolation=P0 , _name="W") ;
Unknown p(W, "p") ; TestFunction q(p , "q") ;

/ / c r e a t e b i l i n e a r forms and Terms
BilinearForm at = intg (omega, grad (ut) | grad (vt)) −intg (gammat, p* vt)

− intg (gammat, ut *q) ;
BoundaryConditions bcst = (ut | sigmat =0) ;
TermMatrix At (at , bcst , " At ") ;
TermVector Ft (intg (omega, f * vt) −intg (gammat, g*q) , " Ft ") ;

/ / s o l ve l i ne ar system and save the solution to a vtu f i l e
TermVector Ut = directSolve (At , Ft) ;
saveToFile ("Ut" , Ut , vtu) ;

>>>>>>> space_keyvalues
return 0 ;

}

To extract the solution on the real domainΩ, a L2 projection is used:

/ / c r e a t e a mesh f o r Omega
Disk disk (_center=Point (0 . 5 , 0 . 5) , _radius =R, _hsteps =0.05 ,

_domain_name = " Obstacle " , _side_names="Gamma") ;
Mesh mesh(rectangle −disk , _ t r i a n g l e) ;
Domain omega = mesh . domain("Omega") ;
Space V(omega, P1 , "V") ; Unknown u(V , "u") ; TestFunction v (u , "v") ;

/ / compute L2 project ion of ut on omega
TermMatrix M(intg (omega, u* v)) , M2(intg (omega, ut * v)) ;
TermVector PUt = directSolve (M,M2*Ut) ;

38

saveToFile ("PUt" ,PUt , _vtu) ;

Note that the computation of the matrix M2 also requires a computation of an integrals involving two meshes!

Figure 3.11: Solution of the Laplace 2D problem with the ficticious domain method

3.6 2D Maxwell equations using Nedelec elements

XLIFE++ provides Nedelec elements (first and second family) that are H(curl) comforming. Consider the
following academic Maxwell problem:{

curlcurlE−ω2µεE = f inΩ

E×n = 0 on ∂Ω

with the following weak form:∣∣∣∣∣∣
find E ∈V = {v ∈ H(cur l ,Ω), v×n = 0 on ∂Ω} such that∫

Ω
curlEcurlv =

∫
Ω

E v ∀v ∈V.

Using first family Nedelec’s element, the XLIFE++ program looks like:

#include " x l i f e ++.h"
using namespace x l i f e p p ;

Real omg=1 , eps=1 , mu=1 , a=pi_ , ome=omg* omg* mu* eps ;

39

Vector<Real> f (const Point& P , Parameters& pa = defaultParameters)
{

Real x=P(1) , y=P(2) ;
Vector<Real> res (2) ;
Real c=2*a*a−ome;
res (1) =−c * cos (a* x) * sin (a* y) ;
res (2) = c * sin (a* x) * cos (a* y) ;
return res ;

}

Vector<Real> solex (const Point& P , Parameters& pa = defaultParameters)
{

Real x=P(1) , y=P(2) ;
Vector<Real> res (2) ;
res (1) =−cos (a* x) * sin (a* y) ;
res (2) = sin (a* x) * cos (a* y) ;
return res ;

}

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ;
/ / mesh square using gmsh
SquareGeo sq (_xmin=0 , _xmax=1 , _ymin=0 , _ymax=1 , _nnodes=50 , _side_names="Gamma") ;
Mesh mesh2d(sq , tr iangle , 1 , gmsh) ;
Domain omega=mesh2d . domain("Omega") ;
Domain gamma=mesh2d . domain("Gamma") ;
/ / define space and unknown
Space V(_domain=omega, _FE_type=Nedelec , _order =1 , _name="V") ;
Unknown e (V , "E") ;
TestFunction q(e , "q") ;
/ / define forms , matrices and v e c t o r s
BilinearForm aev=intg (omega, curl (e) | curl (q)) − ome* intg (omega, e | q) ;
LinearForm l =intg (omega, f | q) ;
EssentialConditions ecs = (ncross (e) |gamma=0) ;
/ / compute
TermMatrix A(aev , ecs , "A") ;
TermVector b(l , "B") ;
/ / s o l ve
TermVector E=directSolve (A , b) ;
/ / P1 interpolation , L2 project ion on H1
Space W(_domain=omega, _interpolation=P1 , _name="W") ;
TermVector EP1=projection (E , W, 2) ;
EP1 .name("E") ;
saveToFile ("E" , EP1 , vtu) ;
return 0 ;

}

As Nedelec finite elements approximation are not conforming in H1, the solution is not continuous across
elements (only tangent component is continuous). So to represent the solution, it is projected on H1 as follows:∣∣∣∣∣∣

find E1 ∈ L2(Ω) such that∫
Ω

E1 w =
∫
Ω

E w ∀w ∈ L2(Ω).

Using an H1 conforming approximation for E1 leads to a continuous representation of the projection. We show
on the next figure the Ex component field provided by this example:

40

Figure 3.12: First component of the solution of the Maxwell 2D problem using Nedelec first family elements,
and nodal error

Figure 3.13: L2 errors versus the step h for 1 and 2 order Nedelec first family approximation

3.7 Eigenvalues and eigenvectors of Laplace operator

This exemple shows how to get eigen functions of Laplace operator equipped with homogeneous Neumann
condition: {

−∆u +u =λu inΩ

∂nu = 0 on ∂Ω

and its variational formulation in V = H 1(Ω):∣∣∣∣∣∣
find (u,λ) ∈V ×R such that∫

Ω
∇u.∇v +

∫
Ω

u v =λ
∫
Ω

u v ∀v ∈V.

#include " x l i f e ++.h"
using namespace x l i f e p p ;

int main(int argc , char ** argv)

41

{
i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p

/ / mesh square
SquareGeo sq (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=20) ;
Mesh mesh2d(sq , tr iangle , 1 , gmsh) ;
Domain omega = mesh2d . domain("Omega") ;

/ / build P2 interpolation
Space Vk(_domain=omega, _interpolation=P2 , _name="Vk") ;
Unknown u(Vk , "u") ;
TestFunction v (u , "v") ;

/ / build eigen system
BilinearForm auv = intg (omega, grad (u) | grad (v)) + intg (omega, u * v) ,

muv = intg (omega, u * v) ;
TermMatrix A(auv , "auv") , M(muv, "muv") ;

/ / compute the 10 f i r s t smallest in magnitude
EigenElements eigs = eigenInternSolve (A , M, _nev=10 , _mode=krylovSchur , _which="SM") ; / /

internal s o l v e r
theCout << eigs . values ;
saveToFile (" eigs " , eigs . vectors , vtu) ;
return 0 ;

}

Figure 3.14: 9 first eigen vectors of the Laplace 2D problem with P2 elements

3.8 3D Helmholtz problem using single layer potential integral equation

XLIFE++ is also able to deal with integral equation. This example illustrates the computation of the acoustic
scattering by a sphere:

42

{
∆u +k2u = 0 inΩ=R3/B(0,R)

u =−ui nc on S

Using single layer potential leads to the integral equation, :∫
S

G(x, y)p(x)d x =−ui nc on S

where G is the Green function of the Helmhotz equation:

G(x, y) = e i k|x−y |

4π|x − y | .

We deal with the variational formulation in V = H
1
2 (S):∣∣∣∣∣∣

find p ∈V such that∫
S

∫
S

p(x)G(x, y) q̄(y)d x d y =−
∫

S
ui nc q̄ ∀q ∈V.

The solution u is get from potential p from the integral representation:

u(x) =
∫

S
G(x, y)p(y)d y.

This example has been implemented in XLIFE++ using a P 0 Lagrange interpolation:

#include " x l i f e ++.h"
using namespace x l i f e p p ;

/ / incident plane wave
Complex uinc (const Point& p , Parameters& pa = defaultParameters)
{

Real kx=pa ("kx") , ky=pa ("ky") , kz=pa ("kz") ;
Real kp=kx *p(1) +ky *p(2) ;
return exp (i _ *kp) ;

}

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p
numberOfThreads (2) ;
/ / define parameters and functions
Parameters pars ;
pars << Parameter (1 . , "k") ; / / wave number k
pars << Parameter (1 . , "kx") << Parameter (0 . , "ky") << Parameter (0 . , "kz") ; / / kx , ky , kz
pars << Parameter (1 . , " radius ") ; / / disk radius
Kernel G = Helmholtz2dKernel (pars) ; / / load Helmholtz2D kernel
Function f i n c (uinc , pars) ; / / define r i g h t hand side function
Function scatSol (scatteredFieldDiskDirichlet , pars) ; / / exact solution

/ / meshing the unit disk
Number npa=16; / / nb of points by diameter of disk
Disk sp (_center=Point (0 . , 0 .) , _radius =1 , _nnodes=npa , _domain_name=" disk ") ;
Mesh mS(sp , segment , 1 , gmsh) ;
Domain disk = mS. domain(" disk ") ;

/ / Lagrange P0 space and unknown
Space V1(_domain=disk , _interpolation=P1 , _name="V1" , _notOptimizeNumbering) ;
Unknown u1 (V1 , "u1") ; TestFunction v1 (u1 , "v1") ;

/ / form d e f i n i t i o n s

43

IntegrationMethods ims (Duffy , 5 , 0 . , Gauss_Legendre , 5 , 1 . , Gauss_Legendre , 4 , 2 . ,
Gauss_Legendre , 3) ;

BilinearForm b l f 0 =intg (disk , disk , u1*G*v1 , ims) ;
LinearForm fv0 = −intg (disk , f i n c * v1) ;

/ / compute matrix and r i g h t hand side and so l ve system
TermMatrix A0(blf0 , denseDualStorage , "A0") ;
TermVector B0(fv0 , "B0") ;
TermVector U0 = directSolve (A0 , B0) ;

/ / i n t e g r a l representation on x plane (far from disk) , using P1 nodes
Number npp=20 , npc=8*npp/10;
Real xm=4. , eps =0.0001;
Point C1 (0 . , −xm) , C2 (0 . , xm) , C3 (0 . , −xm) ;
SquareGeo sqx (_center=Point (0 . , 0 .) , _length =4. , _nnodes=npp, _domain_name="Omega") ;
Disk dx (_center=Point (0 . , 0 .) , _radius =1.25 , _nnodes=npc) ;
Mesh mx0(sqx−dx , tr iangle , 1 , gmsh) ;
Domain planx0 = mx0. domain("Omega") ;
Space Wx(_domain=planx0 , _interpolation=P1 , _name="Wx" , _notOptimizeNumbering) ;
Unknown wx(Wx, "wx") ;
TermVector U0x0=integralRepresentation (wx, planx0 , intg (disk , G*u1) , U0) ;
TermMatrix Mx0(intg (planx0 , wx*wx) , "Mx0") ;

/ / compare to exact solution
TermVector solx0 (wx, planx0 , scatSol) ;
TermVector ec0x0=U0x0 − solx0 ;
theCout << "L2 error on x=0 plane : " << sqrt (abs ((Mx0* ec0x0) | ec0x0)) << eol ;

/ / export solution to f i l e
saveToFile ("U0" , U0, vtu) ;
saveToFile ("U0x0" , U0x0 , vtu) ;
return 0 ;

}

Figure 3.15: Solution of the 3D Helmholtz problem using single layer BEM on the unit sphere

3.9 2D Helmholtz problem coupling FEM and integral representation

We want to solve the acoustic diffraction of a plane wave on the disk of radius 1, with the boundary Γ:

44

{
∆u +k2u = 0 in R2/D

∂nu = g on Γ (n the outward normal)

where g = ∂n
(
e i kx

)
.

LetΩ be a domain that strictly surrounding the disk D and Σ its boundary. We have to point out that in this
case, we use normals going outside the domain of computationΩ but then the normal on the obstacle (defined
on Γ) is going inside the obstacle, that is opposite to usual case (see Figure 3.16). Then, because of the normal
inverted, the solution u may be represented by the integral representation formula (G is the Green function
related to the 2D Helmholtz equation in free space):

∀x ∈Σ, u(x) =−
∫
Γ
∂ny G(x, y)u(y)d y +

∫
Γ

G(x, y)∂ny u(y)d y (3.1)

say, because the boundary condition:

u(x) =−
∫
Γ
∂ny G(x, y)u(y)d y +

∫
Γ

G(x, y) g (y)d y.

ny is the outward normal (to Ω not the obstacle) on Γ and nx will denote the outward normal on Σ. Now
matching values and normal derivative on Σ, we introduce the boundary condition:

(∂nx +λ)u(x) =−(∂nx +λ)
∫
Γ
∂ny G(x, y)u(y)d y + (∂nx +λ)

∫
Γ

G(x, y) g (y)d y

that reads, because G is not singular on Γ×Σ:

(∂nx +λ)u(x) = −
∫
Γ
∂nx∂ny G(x, y)u(y)d y −λ

∫
Γ
∂ny G(x, y)u(y)d y

+
∫
Γ
∂nx G(x, y) g (y)d y +λ

∫
Γ

G(x, y) g (y)d y =Rλ(u)(x)

Using this exact boundary condition, if Im(λ) ̸= 0) the initial problem is equivalent to :
∆u +k2u = 0 inΩ

∂nu = g on Γ

(∂nx +λ)u =Rλ(u) on Σ

Its variational formulation in V = H 1(Ω) is:∣∣∣∣∣∣∣∣∣
find u ∈V such that ∀v ∈V∫

Ω
∇u.∇v̄ −k2

∫
Ω

u v̄ +λ
∫
Σ

u v̄ +
∫
Σ

∫
Γ

u(y)∂nx∂ny G(x, y) v̄(x)+λ
∫
Σ

∫
Γ

u(y)∂ny G(x, y) v̄(x)

=
∫
Γ

g v̄ +
∫
Σ

∫
Γ

g (y)∂nx G(x, y) v̄(x)+λ
∫
Σ

∫
Γ

g (y)G(x, y) v̄(x).

Considering the geometrical configuration:

45

Figure 3.16: Geometrical configuration for the FEM-Integral Representation problem. The normal on Γ is going
inside the obstacle (to point outsideΩ).

the variational formulation is implemented as follows:

#include " x l i f e ++.h"
using namespace x l i f e p p ;

Complex data_g (const Point& P , Parameters& pa = defaultParameters)
{

Real x=P(1) , k=pa ("k") ;
Vector<Complex> g (2 , 0 .) ;
g (1) = i _ *k*exp (i _ *k* x) ;
return dot (g , P/norm2(P)) ; / / dr (e ^{ ikx }

}

Complex u_inc (const Point& P , Parameters& pa = defaultParameters)
{

Real x=P(1) , k=pa ("k") ;
return exp (i _ *k* x) ;

}

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p
/ / parameters

Number nh = 10; / / number of elements on Gamma
Real h=2* pi_ /nh ; / / s i z e of mesh
Real re =1.+2*h ; / / e x t e r i o r radius
Number ne=Number(2* pi_ * re /h) ; / / number of elements on Sigma
Real l = 4* re ; / / length of e x t e r i o r square
Number nr=Number(4* l /h) ; / / number of elements on e x t e r i o r square
Real k= 4 , k2=k*k ; / / wavenumber
Parameters pars ;
pars << Parameter (k , "k") << Parameter (k2 , "k2") ;
Kernel H=Helmholtz2dKernel (pars) ;
Function g (data_g , pars) ;
Function ui (u_inc , pars) ;
/ / Mesh and domains d e f i n i t i o n
Disk d1 (_center=Point (0 . , 0 .) , _radius =1 , _nnodes=nh , _side_names=Strings (4 , "Gamma")) ;
Disk d2 (_center=Point (0 . , 0 .) , _radius=re , _nnodes=ne , _domain_name="Omega" ,

_side_names=Strings (4 , "Sigma")) ;
SquareGeo sq (_center=Point (0 . , 0 .) , _length=l , _nnodes=nr , _domain_name="Omega_ext") ;
Mesh mesh(sq +(d2−d1) , tr iangle , 1 , gmsh) ;
Domain omega=mesh . domain("Omega") ;
Domain sigma=mesh . domain("Sigma") ;
Domain gamma=mesh . domain("Gamma") ;
Domain omega_ext=mesh . domain("Omega_ext") ; / / f o r i n t e g r a l representation
sigma . setNormalOrientation (_outwardsDomain , omega) ; / / outwards normals
gamma. setNormalOrientation (_outwardsDomain , omega) ;

46

/ / c r e a t e P2 Lagrange interpolation
Space V(_domain=omega, _interpolation=P2 , _name="V") ;
Unknown u(V , "u") ; TestFunction v (u , "v") ;
/ / c r e a t e b i l i n e a r form and l in ear form

Complex lambda=− i _ *k ;
BilinearForm auv =

intg (omega, grad (u) | grad (v)) −k2* intg (omega, u* v) +lambda* intg (sigma , u* v)
+intg (sigma , gamma, u* (grad_y (grad_x (H) | _nx) | _ny) * v)
+lambda* intg (sigma , gamma, u* (grad_y (H) | _ny) * v) ;

BilinearForm alv =
intg (sigma , gamma, u * (grad_x (H) | _nx) * v) +lambda* intg (sigma , gamma, u*H* v) ;

TermMatrix A(auv) , ALV(alv) ;
TermVector B(intg (gamma, g* v)) ;
TermVector G(u , gamma, g) ;
B+=ALV*G;
/ / s o l ve l i ne ar system AU=F
TermVector U=directSolve (A , B) ;
saveToFile ("U. vtk " , U, vtk) ;
/ / i n t e g r a l representation on omega_ext
Space Vext (_domain=omega_ext , _interpolation=P2 , _name=" Vext " , _notOptimizeNumbering) ;
Unknown uext (Vext , " uext ") ;
TermVector Uext =

−integralRepresentation (uext , omega_ext , intg (gamma, (grad_y (H) | _ny) *U))
+integralRepresentation (uext , omega_ext , intg (gamma, H*G)) ;

saveToFile ("Uext . vtk " , Uext , vtk) ;
/ / t o t a l f i e l d
TermVector Ui (u , omega, ui) , Utot=Ui+U;
TermVector Uiext (uext , omega_ext , ui) , Utotext=Uiext+Uext ;
saveToFile ("Utot . vtk " , Utot , vtk) ;
saveToFile (" Utotext . vtk " , Utotext , vtk) ;
return 0 ;

}

In the beginning, some geometric parameters used to design crown surrounded by a square, are given. Next
the mesh is generated using gmsh mode and the geometrical domains are get from the mesh. The normal
orientations are chosen in order to have outwards normals to the crown omega.

Then a P2 Lagrange space over the elements of the crown omega is constructed and all bilinear and linear forms
involved in variational form are defined. Then the TermMatrix and TermVector are computed and the problem
is solved using a direct method (Umfpack if it is installed, LU factorization else), that leads to the solution U in
the crown omega.

Finally, using integral representation formula 3.1, the solution is computed in the exterior domain omega_ext.
The vectors U and Uext are diffracted fields. To get total field, the incident field has to be added to the diffracted
filed. This is the final job that it is done.

The real part of the total field computed is presented on the figure 3.17.

47

Figure 3.17: 2D Helmholtz diffraction problem using FE-IR method: real part of the total field

3.10 2D Helmholtz problem coupling FEM and BEM

We want to solve the acoustic propagation of a plane wave in a heterogeneous medium. In order to do that, we
distinguish a domainΩ that is heterogeneous, its boundary Γ and the exterior domainΩext that is homogeneous
(see Figure 3.18).

Ω Ωext

Γ

−→n

Figure 3.18: Domains for computation: Ω the heterogeneous medium,Ωext the homogeneous exterior domain
and Γ= ∂Ω.

We solve: {
∆u(x)+k2η2(x)u(x) = 0 in R2

u(x) =−ui (x) on Γ

with η(x) = 1 inΩext, and η(x) that can vary inΩ, and finally with ui = e i kx .
We will use: Ω= [−0.5,0.5]2 and

η(x) =
{

exp
(−(x2

1 −0.25)∗ (x2
2 −0.25)/(2.∗0.05)

)
, when max(x1, x2) < 0.5.

1 otherwise.

48

Figure 3.19: η(x) inΩ∪Ωext.

We decompose the problem in a coupled system of two equations:

• in the FEM part, the solution solves the following equation:

∆u +k2η2u = 0

which gives the variational formulation:

∣∣∣∣ Find u ∈ H 1(Ω) such that :∫
Ω∇u(x) ·∇v̄(x)d x −k2

∫
Ωη

2(x)u(x)v̄(x)d x −∫
Γλ(x)v̄(x)d x = 0, ∀v ∈ H 1(Ω)

, (3.2)

with λ= ∂u
∂n is the normal trace of u on Γ.

• in the BEM part, we solve:

{
∆u +k2u = 0 inΩext

u =−ui on Γ.
(3.3)

The scattered field verifies:

us(x) =−SΓλ(x)+KΓu(x), x ∈Ωext, (3.4)

with u the total field solution of the equation and λ the normal trace of u on Γ, SΓ and KΓ are the single
and double layer boundary potentials:

SΓφ(x) =
∫
Γ

G(x, y)φ(y)d y,

KΓφ(x) =
∫
Γ

∂G(x, y)

∂ny
φ(y)d y,

and

G(x, y) = e i k∥x−y∥

4π∥x − y∥
Since us = u −ui , and taking the limit when x goes to Γ, we obtain the integral equation:

(
I

2
−KΓ

)
u(x)+SΓλ(x) = ui (x), x ∈ Γ. (3.5)

49

The resulting variational formulation for the BEM part is then:

∣∣∣∣∣∣∣∣∣∣
Find u ∈ H 1/2(Γ) and λ ∈ H−1/2(Γ) such that :

1

2

∫
Γ

u(x)τ̄(x)d x −
∫
Γ×Γ

u(y)
∂G(x, y)

∂ny
τ̄(x)d yd x +

∫
Γ×Γ

λ(y)G(x, y)τ̄(x)d yd x

=
∫
Γ

ui (x)τ̄(x)d x,∀τ ∈ H 1/2(Γ).

(3.6)

By adding the variational formulations relatives to the two linked problems, we obtain the final variational
formulation.
Finally, the solution is obtained directly from u for the FEM part and we need to compute the integral repre-
sentation to obtain us , the scattered field, and then to add the incident field to obtain the total field for this
problem.
The last step is to merge the FEM solution inΩ and the BEM solution inΩext to obtain a solution on the whole
domainΩ∪Ωext to simplify the visualisation.

Figure 3.20: Solution of the FEM-BEM problem.

The code of this example follows:

#include " x l i f e ++.h"
using namespace x l i f e p p ;
using namespace std ;

/ / f ind = eta (x)
Real f ind (const Point & M, Parameters & pa = defaultParameters)
{

Real res = 1 . ;
i f (std : : max(std : : abs (M[0]) , std : : abs (M[1])) < 0 . 5)

res=std : : exp (− ((M[0] *M[0] −0.25) * (M[1] *M[1] −0.25)) / (2 . * 0 . 0 5)) ;
return res ;

}
Real eta2 (const Point & M, Parameters & pa = defaultParameters)
{

Real tmp=find (M) ;
return tmp*tmp ;

}
Complex g1 (const Point& M, Parameters& pa = defaultParameters)
{

Real k=real (pa ("k")) ;
Point d (1 . , 0 .) ;
return exp (i _ * (k* dot (M, d))) ;

}

50

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p
verboseLevel (10) ;
Real k = 1 0 . ;
/ / meshing
Real hsize =(2* pi_ /k) / 1 5 . ;
SquareGeo sp (_center=Point (0 . , 0 .) , _length =1. , _hsteps=hsize , _domain_name="Omega" ,

_side_names="Gamma") ;
Mesh m1=Mesh(sp , tr iangle , 1 , gmsh) ;
Domain omega = m1. domain("Omega") ;
Domain gamma = m1. domain("Gamma") ;
theCout << "Mesh s i z e = " << hsize << eol ;
theCout << "Number of Triangles = " << m1. nbOfElements () << eol ;
/ / defining parameter and kernel
Parameters pars ;
pars << Parameter (k , "k") ;
Vector<Real> nv (2) ;
pars << Parameter(&nv , "_n") ;
Kernel G=Helmholtz2dKernel (pars) ;
Function f i n c (g1 , pars) ;
/ / defining space , unknown and t e s t function
Space V1(_domain=omega, _interpolation=P1 , _name="V1" , _notOptimizeNumbering) ;
Space V0(_domain=gamma, _interpolation=P1 , _name="V0" , _notOptimizeNumbering) ;
Unknown u1 (V1 , "u1") ; TestFunction v1 (u1 , "v1") ;
Unknown l 0 (V0 , " l 0 ") ; TestFunction l t 0 (l0 , " l t 0 ") ;
theCout << "Nb dofs BEM= " << V0 . nbDofs () << " Nb dofs FEM= " << V1 . nbDofs () << eol ;
/ / defining b i l i n e a r and l in ear form
IntegrationMethods ims (Duffy , 15 , 0 . , _defaultRule , 12 , 1 . , _defaultRule , 10 , 2 . , _defaultRule ,

8) ;
BilinearForm b l f =intg (omega, grad (u1) | grad (v1)) −k*k* intg (omega, eta2 *u1* v1)

− intg (gamma, l 0 * v1) + 0.5* intg (gamma, u1* l t 0)
− intg (gamma, gamma, u1* ndotgrad_y (G) * l t 0 , ims)
+ intg (gamma, gamma, l 0 *G* l t 0 , ims) ;

LinearForm l f =intg (gamma, f i n c * l t 0) ;
/ / computing FEM/BEM matrix and r i g h t hand side vector
TermMatrix lhs (blf , " lhs ") ;
TermVector rhs (l f) ;
/ / solving l in ear system using d i r e c t method
TermVector sol=directSolve (lhs , rhs) ;

/ / Representing the solution FEM and BEM
SquareGeo Sint (_center=Point (0 . , 0 .) , _length =1 , _hsteps=hsize , _domain_name=" S_int ") ;
SquareGeo Sext (_center=Point (0 . , 0 .) , _length =3 , _hsteps =1.5* hsize , _domain_name=" S_ext ") ;
Mesh mrep(Sext+Sint , _tr iangle , 1 , _gmsh) ;
Domain S_ext=mrep . domain(" S_ext ") , S_int=mrep . domain(" S_int ") ;
Domain S=merge(S_ext , S_int , "S") ;
Space Vrep (_domain=S , _interpolation=P1 , _name="Vrep" , _notOptimizeNumbering) ;
Unknown ur (Vrep , "ur") ;
Function Find (find , pars) ;
TermVector findex (ur , S , Find) ;
saveToFile (" findex " , findex , _vtu) ; / / Representing eta
TermVector Uint=interpolate (ur , S_int , sol (u1)) ; / / FEM solution (t o t a l f i e l d)
saveToFile ("Uint" , Uint , _vtu) ;

/ / Representing of the BEM part
IntegrationMethods imr (_GaussLegendreRule , 20 , 1 . , _GaussLegendreRule , 10 , 2 . ,

_GaussLegendreRule , 5) ;
TermVector Uext =

− integralRepresentation (ur , S_ext , intg (gamma, G* sol (l 0) , imr))
+ integralRepresentation (ur , S_ext , intg (gamma, ndotgrad_y (G) * sol (u1) , imr)) ;

51

TermVector Uinc (ur , S_ext , f i n c) ;
saveToFile ("Uinc" , Uinc , vtu) ; / / Incident f i e l d
saveToFile ("Uext" , Uext , vtu) ; / / s c a t t e r e d f i e l d in e x t e r i o r domain
TermVector Uext_t = Uext + Uinc ;
saveToFile (" Uext_t " , Uext_t , vtu) ; / / Total f i e l d in e x t e r i o r domain
TermVector U=merge(Uint , Uext_t) ; / / Merged FEM and BEM solutions
saveToFile ("U" , U, vtu) ;
theCout << "Program finished " << eol ;
return 0 ;

}

3.11 3D Maxwell problem using EFIE

Solving diffraction of an electromagnetic plane wave on a obstacle using BEM is more intricate. Indeed, it is a
vector problem and it involves Raviart-Thomas elements. We show how XLIFE++ can deal easily with.

Let Γ be the boundary of a bounded domain Ω of R3, we want to solve the Maxwell problem on the exterior
domainΩe : 

curlE− i kH = 0 inΩe

curlH+ i kE = 0 inΩe

E×n = 0 on Γ

lim
|x|→∞

(
(H−Hi nc)× x

|x| − (E−Ei nc)

)
= 0 (Silver-Muller condition)

where (Ei nc ,Hi nc) is an incident field (a solution of Maxwell equation in free space), for instance a plane wave.

The EFIE (Electric Field Integral Equation) consists in finding the potential J in the space

Hdiv(Γ) = {
V ∈ L2(Γ)3,V.n = 0,divΓV ∈ L2(Γ)

}
such that, ∀V ∈ Hdiv(Γ)

k
∫
Γ

∫
Γ

J(y)G(x, y).V(x)− 1

k

∫
Γ

∫
Γ

divΓ J(y)G(x, y)divΓV(x) =−
∫
Γ

Ei nc .V

where G is the Green function related to the Helmholtz 3D problem in free space.

This equation has a unique solution, except for a discrete set of wavenumbers corresponding to the resonance
frequencies of the cavityΩ.

Using the Stratton-Chu representation formula, the scattered electric field may be reconstructed inΩe :

E(x) = Ei nc (x)+ 1

k

∫
Γ
∇xG(x, y)divΓJ(y)+k

∫
Γ

G(x, y)J(y).

This problem is implemented in XLIFE++ as follows:

#include " x l i f e ++.h"
using namespace x l i f e p p ;
Vector<complex_t> data_incField (const Point& P , Parameters& pars)
{

Vector<real_t > incPol (3 , 0 .) ; incPol (1) = 1 . ; Point incDir (0 . , 0 . , 1 .) ;
Real k = pars ("k") ;
return incPol * exp (i _ *k * dot (P , incDir)) ;

}

Vector<complex_t> uinc (const Point& P , Parameters& pars)

52

{
Vector<real_t > incPol (3 , 0 .) ; incPol (1) = 1 . ; Point incDir (0 . , 0 . , 1 .) ;
Real k = pars ("k") ;
return incPol *exp (i _ *k * dot (P , incDir)) ;

}

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ;
/ / define parameters and functions
Real k= 1 , R= 1 . ; Parameters pars ;
pars << Parameter (k , "k") << Parameter (R, " radius ") ;
Kernel H = Helmholtz3dKernel (pars) ; / / load Helmholtz3D kernel
Function Einc (data_incField , pars) ; / / define r i g h t hand side
Function Uex(scatteredFieldMaxwellExn , pars) ;
/ / meshing the unit sphere

Number npa=15; Point O(0 , 0 , 0) ;
Sphere sphere (_center=O, _radius=R, _nnodes=npa , _domain_name="Gamma") ;
Mesh meshSh(sphere , tr iangle , 1 , gmsh) ;
Domain Gamma = meshSh . domain("Gamma") ;
/ / define FE−RT1 space and unknown
Space V_h(_domain=Gamma, _interpolation=RT_1 , _name="Vh") ;
Unknown U(V_h , "U") ; TestFunction V(U, "V") ;
/ / compute BEM system and s ol ve i t
IntegrationMethods ims (_SauterSchwabIM , 4 , 0 . , _defaultRule , 5 , 2 . , _defaultRule , 3) ;
BilinearForm auv = k* intg (Gamma, Gamma, U*H| V , ims)

−(1./ k) * intg (Gamma, Gamma, div (U) *H* div (V) , ims) ;
TermMatrix A(auv , "A") ;
TermVector B(− intg (Gamma, Einc | V)) ;
TermVector J = directSolve (A , B) ;
/ / get P1 representation of solution and export i t to vtu f i l e
Space L_h (_domain=Gamma, _interpolation=P1 , _name="Lh") ;
Unknown U3(L_h , "U3" , 3) ; TestFunction V3(U3, "V3") ;
TermVector JP1=projection (J , L_h , 3 , _L2Projector) ;
saveToFile (" JP1 " , JP1 (U3[1]) , vtu) ;
/ / i n t e g r a l representation on y=0 plane (excluding sphere) , using P1 nodes

Number npp=30 , npc=5;
Square sqx (_center=O, _length =20. , _nnodes=npp, _domain_name="Omega") ;
Disk dx (_center=O, _radius =1.2*R, _nnodes=npc) ;
Mesh mx0(sqx−dx , tr iangle , 1 , gmsh) ;
mx0. rotate3d (1 . , 0 . , 0 . , pi_ /2) ;
Domain py0 = mx0. domain("Omega") ;
Space Vy0 (_domain=py0 , _interpolation=P1 , _name="Vy0" , _notOptimizeNumbering) ;
Unknown W(Vy0 , "W" , 3) ;
IntegrationMethods im(_defaultRule , 10 , 1 . , _defaultRule , 5) ;
TermVector Uext=

(1 . / k) * integralRepresentation (W, py0 , intg (Gamma, grad_x (H) * div (U) , im) , J)
+ k* integralRepresentation (W, py0 , intg (Gamma, H*U, im) , J) ;

saveToFile ("Uext" , Uext , vtu) ;
/ / build exact solution , export to vtu f i l e and compute err or
TermVector Uexa(W, py0 , Uex) ;
saveToFile ("Uexa" , Uexa , vtu) ;
TermMatrix M(intg (py0 , W|W)) ;
TermVector E=Uext−Uexa ;
theCout << "L2 error = " << sqrt (real (M*E | E)) << eol ;
return 0 ;

}

In order to build an approximated space of Hdiv(Γ) we use the Raviart-Thomas element of order 1.
As the integrals involved in bilinear form are singular, we use here the Sauter-Schwab method to compute them
when two triangles are adjacent, a quadrature method of order 5 if the two triangles are close (0 < d(T 1,T 2) < 2h)
and a quadrature method of order 3 when the two triangles are far (d(T 1,T 2) >= 2h).

53

Note that the unknowns in RT approximation are the normal fluxes on the edge of the triangulation. In order to
plot the potential J, we have to move to a P1 representation, say J̃. This can be done using a L2 projection from
Hdiv(Γ) to L2(Γ): ∫

Γ
J̃ |V =

∫
Γ

J |V ∀V ∈ L2(Γ)

This is what is done by the XLIFE++ function projection.
We obtain the following potential:

Figure 3.21: 3D Maxwell problem on the unit sphere, using EFIE, potential

On the following figures, we show the approximated electric field and the exact electric field. The component
Ey is not shown because it is zero.

Figure 3.22: 3D Maxwell problem on the unit sphere, using EFIE, x component

54

Figure 3.23: 3D Maxwell problem on the unit sphere, using EFIE, y component

3.12 2D Elasticity problem

The elasticity problem illustrates how to use vector unknown in XLIFE++:{ −div(σ(u)−ω2u = f inΩ
σ(u)n = 0 on ∂Ω

For homogeneous isotropic material:

σ(u) =λdiv(u)I+2µε(u) εi j (u) = ∂i u j .

The variational formulation in V = (H 1(Ω))3 is:∣∣∣∣∣∣
find u ∈V such that

λ

∫
Ω
ε(u) : ε(v̄)+2µ

∫
Ω

div(u)div(v̄)−ω2
∫
Ω

u v̄ =
∫
Ω

f̄.v̄ ∀v ∈V.

This is implemented as follows:

#include " x l i f e ++.h"
using namespace x l i f e p p ;

/ / data function
Vector<Real> f (const Point& P , Parameters& pa = defaultParameters)
{ Vector<Real> F (2 , 0 .) ; F (2) = −0.005; return F ; }

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p

/ / mesh rectangle
Rectangle rect (_center=Point (0 . , 0 .) , _xlength =20 , _ylength =2 , _nnodes=Numbers(50 , 5) ,

_domain_name="Omega" , _side_names=Strings (" " , " " , " " , "Gamma")) ;
Mesh mesh2d(rect , t r iangle , 1 , gmsh) ;
Domain omega=mesh2d . domain("Omega") , Gamma=mesh2d . domain("Gamma") ;
/ / c r e a t e P1 Lagrange interpolation
Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u" , 2) ; TestFunction v (u , "v") ;
/ / c r e a t e b i l i n e a r form and l in ear form

55

Real lambda=112.134 , mu=83.53 , omg2=0 , rho =7.86;
BilinearForm auv = lambda* intg (omega, epsilon (u) % epsilon (v))

+ 2*mu* intg (omega, div (u) * div (v)) − omg2* intg (omega, u | v) ;
LinearForm fv=intg (omega, f | v) ;
EssentialConditions ecs= (u |Gamma=0) ;
TermMatrix A(auv , ecs , "A") ;
TermVector B(fv , "B") ;
/ / s o l ve l i ne ar system AX=B using d i r e c t method
TermVector U=directSolve (A , B) ;
thePrintStream <<U;
saveToFile ("U" , U, vtu) ;

/ / c r e a t e the deformation of the mesh
for (number_t i =0; i <mesh2d . nbOfNodes () ; i ++)

mesh2d . nodes [i] += U. evaluate (mesh2d . nodes [i]) . value<std : : vector <Real> >() ;
mesh2d . saveToFile ("Ud" , msh) ;

return 0 ;
}

Figure 3.24: Displacement and modulus of the solution of the elasticity 2D problem

3.13 2D Bilaplacian problem

The 2d bilaplacian problem illustrates how to use Morley or Argyris element in XLIFE++:{
∆2u = f inΩ
u = 0 and ∇u.n = 0 on ∂Ω

The variational formulation in V = {
v ∈ H 2(Ω), u = 0 and ∇u.n = 0 on ∂Ω

}
is:∣∣∣∣∣∣

find u ∈V such that∫
Ω

(
∂xx u∂xx v +∂y y u∂y y v +2∂x y u∂x y v

)= ∫
Ω

f v ∀v ∈V.

The implementation in XLIFE++ using Morley elements is the following :

#include " x l i f e ++.h"
using namespace x l i f e p p ;

/ / data function
Real uex (const Point& P , Parameters& pa = defaultParameters)
{

Real x=P(1) , y=P(2) , kp=pi_ ;
Real r=sin (kp*x) * sin (kp*y) ;
return r * r ;

}

Real f (const Point& P , Parameters& pa = defaultParameters)
{

Real x=P(1) , y=P(2) ;
Real dkp=2*k* pi_ ;
Real cx=cos (dkp*x) , cy=cos (dkp*y) ;
return 0.25*dkp*dkp*dkp*dkp * (4 * cx * cy−cx−cy) ;

}

56

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of x l i f e p p
/ / mesh rectangle
SquareGeo sq (_xmin=0 , _xmax=1 , _ymin=0 , _ymax=1. , _hsteps =0.05 , _domain_name="Omega" ,

_side_names="Gamma") ;
Mesh mesh(sq , tr iangle , 1 , gmsh) ;
Domain omega=mesh . domain("Omega") , gamma=mesh . domain("Gamma") ;
/ / c r e a t e space
Space V(_domain=omega, _FE_type=Morley , _order =1 , _name="V") ;
Unknown u(V , "u") ; TestFunction v (u , "v") ;
/ / c r e a t e problem
EssentialConditions ecs= (u |gamma = 0) & (ndotgrad (u) |gamma = 0) ;
TermMatrix A(intg (omega, dxx (u) * dxx (v)) +intg (omega, dyy (u) *dyy (v)) +2* intg (omega,

dxy (u) * dxy (v)) , ecs) ;
TermVector B(intg (omega, f * v) , "B") ;
/ / s o l ve problem
TermVector U=directSolve (A , B) ;
/ / i n t e r p o l a t e on P1 and export to vtu f i l e
Space W(_domain=omega, _interpolation=P1 , _name="W" , _notOptimizeNumbering) ;
Unknown w(W, "w") ;
TermVector Up1=interpolate (w, omega, U, "Up1") ;
saveToFile ("U" , Up1, vtu) ;
TermVector Ue1(w, omega, uex , "Ue1") ;
TermVector Er=Up1−Ue1 ;
saveToFile ("Er" , Er , vtu) ;
return 0 ;

}

Figure 3.25: Approximate solution and difference with exact solution of the bilaplacian 2D problem

In order to use Argiris element in place of Morley element, replace the space definition:

Space V(omega, Argyris , 1 , "V") ;

The next figure shows the L2 convergence rate of the Morley approximation when solving the 2d bilaplacian
problem; in agreement with the order 2 predicting by the theory.

57

Figure 3.26: L2 convergence rate of the Morley approximation

3.14 Solving wave equation

So far, only the harmonic problems were considered. Time problem may also be solved using XLIFE++. But
there is no specific tools dedicated to. Users have to implement the time loop related to the finite difference
time scheme they choose.

As an example, consider the wave equation:

∂2u

∂t 2 − c2∆u = f inΩ×]0,T [

∂u

∂n
= 0 in ∂Ω×]0,T [

u(x,0) = ∂u

∂t
(x,0) = 0 inΩ

Using classical leap-frog scheme with time discretization t n = n∆t , leads to (un approximates u(x, t n)):
un+1 = 2un −un−1 + (c∆t)2∆un + (∆t)2 f n inΩ, ∀n > 1
∂un

∂n
= 0 in ∂Ω, ∀n > 1

u0 = u1 = 0 inΩ

or, in variational form, ∀v ∈V = H 1(Ω):
∫
Ω

un+1v = 2
∫
Ω

un v −
∫
Ω

un−1v − (c∆t)2
∫
Ω
∇un .∇v + (∆t)2

∫
Ω

f n v ∀n > 1

u0 = u1 = 0 inΩ

When approximating space V by a finite dimension space Vh with basis (wi)i=1,p , the variational formulation is
reinterpreted in terms of matrices and vectors as follows: U n+1 = 2U n −U n−1 −M−1 (

(c∆t)2KU n − (∆t)2F n) ∀n > 1

U 0 =U 1 = 0 inΩ

where

Mi j =
∫
Ω

wi w j , Ki j =
∫
Ω
∇wi .∇w j , (F n)i =

∫
Ω

f n wi .

The XLIFE++ implementation of this scheme on the unity square when using P1 Lagrange interpolation looks
like (f (x, t) = h(t)g (x)):

58

#include " x l i f e ++.h"
using namespace x l i f e p p ;

Real g (const Point& P , Parameters& pa = defaultParameters)
{

Real d=P . distance (Point (0 . 5 , 0 . 5)) ;
Real R= 0 . 0 2 ; / / source radius
Real amp= 1 . / (pi_ *R*R) ; / / source amplitude (constant power)
i f (d<=0.02) return amp; else return 0 . ;

}

Real h(const Real& t)
{

Real a=10000 , t0 =0.04 ; / / gaussian slope and center
return exp(−a * (t −t0) * (t −t0)) ;

}

int main(int argc , char ** argv)
{

i n i t (argc , argv , _lang=en) ;
/ / c r e a t e a mesh and domain omega
SquareGeo sq (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=70) ;
Mesh mesh2d(sq , tr iangle , 1 , structured) ;
Domain omega=mesh2d . domain("Omega") ;
/ / c r e a t e interpolation
Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u") ;
TestFunction v (u , "v") ;
/ / define FE terms
TermMatrix A(intg (omega, grad (u) | grad (v)) , "A") , M(intg (omega, u* v) , "M") ;
TermVector G(intg (omega, g* v) , "G") ;
TermMatrix L ; l d l t F a c t o r i z e (M, L) ;
/ / leap −frog scheme
Real c=1 , dt =0.004 , dt2=dt * dt , cdt2=c * c * dt2 ;
Number nbt =200;
TermVectors U(nbt) ; / / to s t o r e solution at t =ndt
TermVector zeros (u , omega, 0 .) ; U(1) =zeros ; U(2) =zeros ;
Real t =dt ;
for (Number n=2; n<nbt ; n++ , t +=dt)
{

U(n+1) =2.*U(n) −U(n−1)−factSolve (L , cdt2 * (A*U(n)) −dt2 *h(t) *G) ;
}
saveToFile ("U" , U, vtu) ;
return 0 ;

}

Note the very simple syntax taken into account the leap-frog scheme. The Figure 3.27 represents the solution at
different instants for a constant source localized in disk with center (0.5,0.5), radius R = 0.02 and time excitation
that is a Gaussian function. For chosen parameter d t = 0.04, the leap-frog scheme is stable (it satisfies the CFL
condition) but dispersion effects obviously appear.

59

Figure 3.27: Solution of the wave equation at different instants for a constant source localized in disk with center
(0.5,0.5)

60

4 XLIFE++ written in C++

This chapter is devoted to the basics of C++ language required to use XLIFE++. It is adressed to people who
does not know C++.

4.1 Instruction sequence

All C++ instructions (ending by semicolon) are defined in block delimited by braces:

{
instruct ion ;
instruct ion ;
. . .

}

Instruction block may be nested in other one:

{
instruct ion ;
{

instruct ion ;
instruct ion ;

}
. . .

}

and are naturally involved in tests, loops, ... and functions.

A function is defined by its name, a list of input argument types, an output argument type and an instruction
sequence in an instruction block:

argout name_of_function (argin1 , argin2 , . . .)
{

instruct ion ;
instruct ion ;
. . .
return something ;

}

The main program is a particular function returning an error code:

int main ()
{

. . .
return 0 ; / / no er ror

}

4.2 Variables

In C++, any variable has to be declared, say defined by specifying its type. Fundamental types are:

• integer number : int (Int type in XLIFE++), unsigned int (Number type in XLIFE++) and short unsigned
int (Dimen type in XLIFE++)

61

• real number : float for single precision (32bits) or double (64bits) for double precision (Real type in
XLIFE++)

• boolean : bool that takes true (1) or false (0) as value

• character : char containing one of the standard ASCII character

All other types are derived types (pointer, reference) or classes (Complex, String for instance).

All variable names must begin with a letter of the alphabet. Do not begin by underscore (_) because it is used by
XLIFE++. After the first initial letter, variable names can also contain letters and numbers. No spaces or special
characters, however, are allowed. Upper-case characters are distinct from lower-case characters.

A variable may be declared any where. When they are declared before the beginning of the main, they are
available anywhere in the file where they are declared.

All variables declared in an instruction block are deleted at the end of the block.

4.3 Basic operations

The C++ provides a lot of operators. The main ones are :

• = : assignment

• +, -, * , / : usual algebric operators

• +=, -=, *=, /= : operation on left variable

• ++, --: to increment by 1 (+=1) and decrement by 1 (-=1)

• == != < > <= >= ! : comparaison operators and negation

• &&, || : logical and, or

• <<, >> : to insert in a stream (read, write)

All these operators may work on object of a class if they have been defined for this class. See documentation of
a class to know what operators it supports.

The operators +=, -=, *=, /= may be useful when they act on large structure because they, generally, do
not modify their representation and avoid copy.

4.4 if, switch, for and while

The syntax of test is the following:

i f (predicate)
{

. . .
}
else i f (predicate2)
{
. . .
}

62

else
{

. . .
}

else if and else blocks are optional and you can have as many else if blocks as you want. predicate is a
boolean or an expression returning a boolean (true or false):

i f ((x==3 && y<=2) | | (! a>b))
{

. . .
}

For multiple choice, use the switch instruction:

switch (i)
{

case 0 :
{

. . .
break ;

}
case 1 :
{

. . .
break ;

}
. . .

default :
{

. . . .
}

}

The switch variable has to be of enumeration type (integer or explicit enumeration).

The syntax of the for loop is the following:

for (i n i t i a l i z a t i o n ; end_test ; incrementing sequence)
{

. . .
}

The simplest loop is:

for (int i =0; i < n ; i ++)
{

. . .
}

An other example with no initializer and two incrementing values:

int i =1 , j =10;
for (; i < n && j >0; i ++ , j −−)
{

. . .
}

A for loop may be replaced by a while loop:

63

int i =0;
while (i <n)
{

. . .
i ++;

}

4.5 In/out operations

The simplest way to print something on screen is to used the predefined output stream cout with operator <<:

Real x =2.25;
Number i =3;
String msg=" X l i f e ++ : " ;
cout << msg << " x=" << x << " i =" << i << eol ;

eol is the XLIFE++ end of line. You can insert in output stream any object of a class as the operator << is defined
for this class. Almost all XLIFE++ classes offer this feature.

To read information from keyboard, you have to use the predefined input stream cin with operator >>:

Real x ;
Number i =3;
cin >> i >> x ;

The program waits for an input of a real value, then for an an input of integer value.

To print on a file, the method is the same except that you have to define an output stream on a file :

ofstream out ;
out . open(" myfile ") ;
Real x =2.25;
Number i =3;
String msg=" X l i f e ++ : " ;
out << msg << " x=" << x << " i =" << i << eol ;
out . close () ;

To read from a file :

i fstream in ;
in . open(" myfile ") ;
Real x ;
Number i =3;
in >> i >> x ;
in . close () ;

The file has to be compliant with data to read. The default separators are white space and carriage return (end
of line).

To read and write on file in a same time, use fstream.

64

All stream stuff id defined in the C++ standard template library (STL). To use it, write at the beginning
of your c++ files :

#include <iostream >
#include <fstream >
. . .

using namespace std ;

4.6 Using standard functions

The STL library provides some fundamental functions such as abs, sqrt, power, exp, sin, To use it, you have
to include the cmath header file :

#include <cmath>
using namespace std ;
. . .
double pi =4*atan (1) ;
double y=sqrt (x) ;
. . .

4.7 Use of classes

The C++ allows to define new types of variable embedding complex structure : say class. A class may handle
some data (member) and functions (member functions). A variable of a class is called an object.

In XLIFE++, you will have only to use it, not to define new one. The main questions are : how to create an object
of a class, how to access to its members and how to apply operations on it. To illustrate concepts, we will use
the very simple Complex class:

class Complex
{

public :
f l o a t x , y ;
Complex(f l o a t a=0 , f l o a t b=0) : x (a) , y (b) { }
f l o a t abs () { return sqrt (x * x+y * y) ;
Complex& operator +=(const Complex& c)

{ x+=c . x ; y+=c . y ; return * t h i s ; }
. . .

} ;

Classes have special functions, called constructors, to create object. They have the name of the class and are
invoked at the declaration of the object:

int main ()
{

Complex z1 ; / / default constructor
Complex z2 (1 , 0) ; / / e x p l i c i t constructor
Complex z4 (z2) ; / / copy constructor
Complex z5=z3 ; / / use copy constructor

Complex z4=Complex(0 , 1) ;
}

Copy constructor and operator = are always defined. When operator = is used in a declaration, the copy con-
structor is invoked. The last instruction uses the explicit constructor and the copy constructor. In practice,

65

compiler are optimized to avoid copy.

To address a member or a member function, you have to use the operator point (.) :

int main ()
{

Complex z (0 , 1) ;
f l o a t r=z . x ;
f l o a t i =z . y ;
f l o a t a=z . abs () ;

}

and to use operators, use it as usual:

int main ()
{

Complex z1 (0 , 1) , z2 (1 , 0) ;
z1+=z2 ;

}

Most of XLIFE++ user’s classes have been developed to be close to natural usage.

4.8 Understanding memory usage

In scientific computing, the computer memory is often asked intensively. So its usage has to be well managed:

• avoid copy of large structures (mainly TermMatrix)

• clear large object (generally it exists a clear function). You do not have to delete objects, they are
automatically destroyed at the end of the blocks where they have been declared !

• when it is possible, use +=, -=, *=, /= operators instead of +, -, *, / operators which induce some
copies

• in large linear combination of TermMatrix, do not use partial combinations which also induce unneces-
sary copies and more computation time

4.9 Main user’s classes of XLIFE++

For sake of simplicity, the developers choose to limit the number of user’s classes and to restrict the use of
template paradigm. Up to now the only template objects are Vector and Matrix to deal with real or complex
vectors/matrices. The name of every XLIFE++ class begins with a capital letter.

XLIFE++ provides some utility classes (see user documentation for details) :

String to deal with character string
Strings to deal with vector of character strings
Number to deal with unsigned (positive) integers
Numbers to deal with vector of unsigned (positive) integers
Real to deal with floats, whatever the precision.
Reals to deal with vector of floats, whatever the precision.
Complex to deal with complexes
Vector<T> to deal with numerical vectors (T is a real/complex scalar or real/complex Vector)
Matrix<T> to deal with numerical matrices (T is a real/complex scalar or real/complex Matrix)
RealVector, RealVectors, RealMatrix, RealMatrices are aliases of previous real vectors and matrices
Complexes, ComplexVector, ComplexVectors, ComplexMatrix, ComplexMatrices are aliases of previous com-

plex vectors and matrices

66

Point to deal with Point in 1D, 2D, 3D
Parameter structure to deal with named parameter of type Real, Complex, Integer, String
Parameters a list of parameters
Function generalized function handling a c++ function and a list of parameters
Kernel generalized kernel managing a Function (the kernel) and some additional data (singularity type,

singularity order, ...)
TensorKernel a special form of kernel useful to DtN map

XLIFE++ also provides the main user’s modelling classes:

Geometry to describe geometric objects (segment, rectangle, ellipse, ball, cylinder, . . .). Each geometry has its
own modelling class (Segment, Rectangle, Ellipse, Ball, Cylinder, . . .)

Mesh mesh structure containing nodes, geometric elements, ...

Domain alias of geometric domains describing part of the mesh, in particular boundaries, and Domains to deal
with vectors of Domain’s

Space class handles discrete spaces (FE space or spectral space) and Spaces some vectors of Space’s

Unknown, TestFunction abstract elements of space and Unknowns, TestFunctions to handle vector of Unknown’s
and TestFunction’s

LinearForm symbolic representation of a linear form

BiLinearForm symbolic representation of a bilinear form

EssentialCondition symbolic representation of an essential condition on a geometric domain

EssentialConditions list of essential conditions

TermVector algebraic representation of a linear form or element of space as vector

TermVectors list of TermVector’s

TermMatrix algebraic representation of a bilinear form

EigenElements list of eigen pairs (eigen value, eigen vector)

67

5 Initialization and global variables

5.1 The init function

As said in chapter 2, every program using XLIFE++ begins by a call to the init function, taking up to 4 key/value
arguments:

_lang enum to set the language for print and log messages. Possible values are en for English, fr for French, de
for German, or es for Spanish. Default value is en.

_verbose integer to set the verbose level. Default value is 1.

_trackingMode boolean to set if in the log file, you have a backtrace of every call to a XLIFE++ routine. Default
value is false.

_isLogged boolean to activate log. Default value is false.

Furthermore, the init function loads functionalities linked to the trace of where such messages come from. If
this function is not called, XLIFE++ cannot work !!! These parameters can also be set from dedicated command
line options:

Command l i n e options for XLiFE++ executables :
−h prints the current help
− j <num> , −jobs <num> , define the number of threads . Default i s
−−jobs <num> −1 , meaning automatical behavior .
− l <str ing > , −lang <str ing > , define the language used for messages .
−−lang <str ing > Default i s en .
− v l <num> , −verbose− l e v e l <num> , define the verbose l e v e l .
−−verbose− l e v e l <num> Default i s 0 .
−v set the verbose l e v e l to 1 .
−vv set the verbose l e v e l to 2 .
−vvv set the verbose l e v e l to 3 .

To deal with these command line options, you just have to give standard arguments to the init function:

i n i t (argc , argc , _lang= f r) ;

5.2 Managing your own options

XLIFE++ provides an Options object to manage user options, that can be read from the command line or from
files.
What is an option ? An option has:

• A name, that will be used to get the value of an option, as for a Parameter.

An option name cannot start with a sequence of "-" characters. First characters must be
alphanumerical.

• One or several keys used to define an option (key in a file or command line option). A key cannot be used
twice and some keys are forbidden, due to some keys dedicated to system options (see section 2.2 about
the init function).

68

• A value, that can be scalar (Int, Number, Real, Complex or String) or vector (Ints, Numbers, Reals,
Complexes or Strings). This is the defautl value of the option and determines its data type. For vector
types, size is not relevant.

This class provides a default constructor. In order to define a user option, you can use the function addOption:

Options opts ;
opts . addOption (" t1 " , 1 . 2) ;
opts . addOption (" t2 " , " tat a ") ;
opts . addOption (" t3 " , "− t " , Complex (0 . , 1 .)) ;
opts . addOption (" t4 " , Strings ("−tu " , "−tv ") , Reals (1 . 1 , −2.4 , 0 . 7)) ;
opts . addOption (" t5 " , Strings (" t ata " , " t i t i ")) ;

To parse options from file and or command line arguments, you may use one of the following line:

opts . parse (argc , argv) ;
String filename="param . t x t " ;
opts . parse (filename) ;
opts . parse (filename , argc , argv) ;

where argv and argv are the arguments of the main function dedicated to command line arguments of the
executable. When using both filename and command line arguments, the latter are given priority.

Let’s now talk about how use options in a file or command-line.
First option is named "t1". So it can be used through the key "t1", "-t1" or "–t1". Fourth option is named "t4"
and has 2 aliases: "-tu" et "-tv". So it can be used through the key "t4", "-t4", "–t4", "-tu" or "-tv".

. / exec −−t1 2.5 −t2 tutu −t3 2.5 −0.1 −t4 2.2 −4.8 1.4 −t5 " tutu " toto " ta ta " t i t i

When passing options from command line, you consider a Complex value as 2 Real values. Furthermore, quotes
are not necessary for String values, unless the value contains special characters such as blank spaces, escape
characters, . . . Here is an example of ascii file used to define options:

t1 3.7
t2 " t i t i "
t3 (2 . 5 , − 0 . 2)
t4 2.5 −2 3.4 4.7
t5 " t i t i " tutu " ta ta " toto

When passing options from a file, a Complex value is now written as a complex, namely real part and imaginary
part are delimited by a comma and inside parentheses. As for command-line case, quotes are not necessary for
String values, unless the value contains special characters such as blank spaces, escape characters, . . .

5.3 Using XLIFE++ with global parameters

5.3.1 Global constants and objects

Some global constants are available and may be useful to you:

pi_ the π constant with the Real precision

i_ the imaginary number with the Complex precision

theEulerConst the Euler-Mascheroni constant

theTolerance the precision used to convergence in norms

theEpsilon the machine epsilon

Some usefulw objets are also available:

thePrintStream_ the dedicated file stream to the print.txt file generated while executing a program using
XLIFE++.

69

theCout Using this stream object means using either the standard output stream std::cout and the previous
file stream thePrintStream_. This is the reason why we recommend you to always use this stream .

eol An alias to std::endl

5.3.2 Multi-threading

XLIFE++, when configured with OPENMP, uses automatically multi-threading. We saw that the init function
enables you to define the number of threads that will be used, but you cal also change the number of threads
everywhere you want in your program. To modify its value, use the numberOfThreads function:

numberOfThreads(24) ;
. . .

numberOfThreads(12) ;
. . .

When used without argument, the routine returns the number of threads currently defined.

In multithreading environment, the stream theCout prints only on the thread 0.

5.3.3 The verbosity

We saw that the init function enables you to define the verbosity, but you cal also change the verbose level
everywhere you want in your program. To modify its value, use the verboseLevel(...) function:

verboseLevel (10) ;
. . .
verboseLevel (0) ;
. . .

When the verbose level is set to 0, nothing is printed except the errors and warnings.

In multithreading environment, it may appear other print files (printxx.txt) corresponding to
outputs of each thread.

70

6 Mesh definition

The geometry library collects all the general classes and functionalities about geometries, meshes, geometrical
domains and geometrical elements.
In order to handle a finite element mesh, XLIFE++ provides the class Mesh. Thus, the user must first of all create
an object of this type, which can be done mainly in two ways:

• reading a file containing the description of the geometry,

• or using XLIFE++ internal (simple) meshing tools.

The internal tools are designed to provide the user with a mesh in a straightforward way. They only deal
with simple geometries. Complicated geometries need to use a specific software that stores the geometrical
description of the mesh into a file.
In this section we will see:

1. How to define geometries, canonical ones and more complicated ones: section 6.1

2. How to apply transformations on geometries (rotations, translations, . . .): section 6.2

3. How to extrude geometries (by translation or rotation): section 6.3

4. How to define a mesh from a geometry: section 6.4

5. How to transform a mesh: section 6.9

6. How to define a mesh from a file: section 6.8

7. How to use geometrical domains: section 6.10

6.1 Defining geometries

To define a geometry object, you will use a constructor:

Pyramid pyr (key1 = val1 , key2 = val2 , . . .) ;

There are a lot of available parameters (or keys) for each geometry object. You can give them in any order. Some
keys are parts of a group of keys. When you use a group of keys, you have to set every key of the group. For
instance, in the following example, to define a triangle, you have to give the three vertices of the triangles with
the keys _v1, _v2, _v3. You must not forget one of them.

Triangle t r i (_v1 = Point (0 . , 0 .) , _v2 = Point (1 . , 0 .) , _v3 = Point (0 . , 1 .) , . . .) ;

There are 3 kind of parameters (plus 1 single parameter):

• First, you have parameters dedicated to geometry definition. This part is different for each geometry and
will be explained in following subsections.

71

• Secondly you have 2 parameters dedicated to mesh parameters such as the number of nodes on each
edge of the geometry (always greater than 2) or the local mesh step on each vertex of the geometry (fitted
to the gmsh mesh generator). For this 2 kinds of arguments, you will have the choice to give a value per
edge (or vertex), or a smaller number of values according to properties of symmetry of the geometry, or a
common value for each edge (or vertex). To set the number of nodes on each edge, you will have to use
the _nnodes key. To set the local mesh step on each vertex, you will have to use the _hsteps key. These
parameters are optional and only one of them is to be used.

Triangle t r i (_v1 = Point (0 . , 0 .) , _v2 = Point (1 . , 0 .) , _v3 = Point (0 . , 1 .) , _nnodes =
Numbers(11 ,15 ,11)) ;

What is the difference between _nnodes and _hsteps ? It is as in the GMSH documentation.

_nnodes When you use this parameter, you set the number of nodes of a regular mesh on an edge. As a
result, the mesh step is constant on the edge. Using this parameter, you can refine a mesh near an
edge.

_hsteps When you use this parameter, you set the value of the mesh step near a vertex. If the mesh step is
the same for both vertices of the edge, then this is a regular mesh (equivalent to define the number
of nodes in this case). If the mesh step is different on vertices of an edge, it varies progressively to fit
the expected value on vertices. Using this parameter, you can refine a mesh near a vertex.

• Thirdly you have parameters dedicated to definition of geometrical domains. These keys are all optional:

_domain_name is used to set the name of the main domain of the geometry. The main domain depends
on the type of mesh (if you mesh a cube with triangles, the main domain will be the whole border,
whereas with tetrahedra, it is the cube itself).

_side_names is used to set the names of every side domain. You can give a vector of strings (Strings
object) or a single String if it is the same name for every side domain.

Default values are empty strings. When a domain has an empty name, it is not built. For some geometries
(cylinders and cones), there is an additional parameter.

• At last you have _type, for geometries fitted to the subdivision mesh generator (See subsection 6.4.2 for
details).

Let’s summarize information about these keys:

key authorized types examples

_domain_name String or const char* _domain_name="Omega"
_hsteps single real value, std::vector of real values or

Reals
_hsteps=0.5, _hsteps=Reals(0.5, 0.2)

_nnodes single (unsigned) integer value, std::vector of
integer values, Number or Numbers

_nnodes=11, _hsteps=Numbers(11,
22)

_side_names single string, std::vector of string, String or
Strings

_side_names="Gamma",
_side_names=Strings("Gam1",
"Gam2", "Gam2")

_type single (unsigned) integer value, or Number _type=1

In the following, we will see how to define each canonical geometries, before showing how to define more
complicated ones.

72

6.1.1 Segments

A segment is just a straight line between 2 points.

n
v1

sn1

v2

sn2

The general case is to give points through parameters _v1 and _v2, but when 1D, you can give directly the real
coordinate:

Segment s1 (_v1=Point (0 . , 0 . , 0 .) , _v2=Point (0 . , 1 . , − 1 .) , _nnodes=11 , _domain_name="Omega") ;
Segment s2 (_v1=Point (0 . , 0 .) , _v2=Point (0 . , 1 .) , _hsteps =0.1 , _domain_name="Omega") ;
Segment s3 (_v1=Point (0 .) , _v2=Point (1 .) , _hsteps=Reals (0 . 1 , 0 . 2) , _domain_name="Omega") ;
Segment s4 (_v1 =0. , _v2 =1. , _nnodes=11 , _domain_name="Omega") ;

In previous examples s3 and s4 are identical. A better comprehensive way for s4 is to use parameters _xmin and
_xmax instead of _v1 and _v2:

Segment s4 (_xmin=0. , _xmax=1. , _nnodes=11 , _domain_name="Omega") ;

In previous examples, you can notice that _nnodes take only a single integer value and _hsteps can take one
real value or a vector of 2 real values (Reals object).
One of the combination _xmin and _xmax or _v1 and _v2 is needed.
After these arguments, you can give names of main domain and side domains as explained in preamble of this
section.

Examples:

/ / segment [−2 ,5] with 50 points when meshing
Segment s1 (_xmin=−2, _xmax=5 , _nnodes=50) ;
/ / segment linking A(1 , 2 , 3) and B(−2 ,5 ,0) with 20 points when meshing and domain i s "Omega1"
Point a (1 . , 2 . , 3 .) ;
Point b (− 2 . , 5 . , 0 .)
Segment s2 (_v1=a , _v2=b , _nnodes=20 , _domain_name="Omega1") ;
/ / segment [0 , 1] with 20 points when meshing and side domains are "Gamma1" and "Gamma2"

Segment s3 (_xmin=0. , _xmax=1. , _nnodes=20 , _side_names=Strings ("Gamma1" , "Gamma2")) ;
/ / segment [0 , 1] with 10 points when meshing and domain i s "Omega" and side domains are "Gamma1"

and "Gamma2"
Segment s4 (_xmin=0. , _xmax=1. , _nnodes=10 , _domain_name="Omega" ,

_side_names=Strings ("Gamma1" , "Gamma2")) ;
/ / segment [0 , 1] with 10 points when meshing and domain i s "Omega" and side domain i s "Gamma"

Segment s4 (_xmin=0. , _xmax=1. , _nnodes=10 , _domain_name="Omega" , _side_names="Gamma") ;

You can reverse the orientation of a segment by using one of the following:

Segment s1 (_xmin=−2, _xmax=5 , _nnodes=50) ;
s1 . reverse () ; / / s1 i s modified
Segment s2=~s1 ; / / s1 i s not modified

When defining composite or loop geometries, you shall not use the reverse method, but only the
∼ operator

Let’s summarize information about geometrical keys for segments:

73

key(s) authorized types examples

_v1, _v2 single integer or real value, or Point _v1=Point(0.), _v2=Point(0.,0.),
_v1=Point(0.,0.,0.), _v2=0.

_xmin, _xmax single integer or real value _xmin=1, _xmax=-2.5

6.1.2 Elliptic and circular arcs

Elliptic arcs

To define an elliptic arc, you need 4 points : the center of the ellipse, the apogee of the ellipse and the bounds of
the arc.

c
a

v1

sn1
v2

sn2

n

There is a parameter for each of them : _center, _apogee, _v1 and _v2. These parameters take 2D or 3D points.
When omitted, the apogee point is defined as the first bound of the arc. An elliptic arc must be smaller than a
half-ellipse, to be defined correctly.
_nnodes take only one single value and _hsteps can take one real value or a vector of 2 real values (Reals
object). After these arguments, you can give names of main domain and side domains as explained in preamble
of this section.

Example:

Point c (0 . , 0 . , 0 .) ;
Point a (2 . , 0 . , 0 .) ;
Point p1 (0 . , 1 . , 1 .) ;
Point p2 (− 1 . , 2 . , 0 .)
/ / whole s ide domain w i l l be "Gamma"
EllArc e1 (_center=c , _apogee=a , _v1=p1 , _v2=p2 , _nnodes=20 , _domain_name="Omega" ,

_side_names="Gamma") ;

You can reverse the orientation of an elliptic arc by using one of the following:

EllArc e1 (_center=c , _apogee=a , _v1=p1 , _v2=p2 , _nnodes=20 , _domain_name="Omega" ,
_side_names="Gamma") ;

e1 . reverse () ; / / e1 i s modified
EllArc e2=~e1 ; / / e1 i s not modified

When defining composite or loop geometries, you shall not use the reverse method, but only the
∼ operator

Let’s summarize information about geometrical keys on elliptic arcs:

key(s) authorized types examples

_apogee, _center,
_v1, _v2

Point _center=Point(0.,0.),
_apogee=Point(0.,0.,0.)

74

Elliptic arcs cannot be defined if the angular sector is greater than π. This is a GMSH restriction!

Circular arcs

To define a circular arc, you need 3 points : the center of the circle and the bounds of the arc.

c

v1

sn1
v2

sn2

n

There is a parameter for each of them : _center, _v1 and _v2. These parameters take 2D or 3D points. A circular
arc must be smaller than a half-circle, to be defined correctly.
_nnodes take only one single value and _hsteps can take one real value or a vector of 2 real values (Reals
object). After these arguments, you can give names of main domain and side domains as explained in preamble
of this section.

Example:

CircArc c1 (_center=Point (0 . , 0 .) , _v1=Point (1 . , 0 .) , _v2=Point (0 . , 1 .) , _nnodes=30 ,
_domain_name="Omega") ;

You can reverse the orientation of a circular arc by using one of the following:

CircArc c1 (_center=Point (0 . , 0 .) , _v1=Point (1 . , 0 .) , _v2=Point (0 . , 1 .) , _nnodes=30 ,
_domain_name="Omega") ;

c1 . reverse () ; / / c1 i s modified
CircArc c2=~c1 ; / / c1 i s not modified

When defining composite or loop geometries, you shall not use the reverse method, but only the
∼ operator

Let’s summarize information about geometrical keys on circular arcs:

key(s) authorized types examples
_center, _v1, _v2 Point _v2=Point(0.,0.),

_center=Point(0.,0.,0.)

Circular arcs cannot be defined if the angular sector is greater or equal than π. This is a GMSH

restriction!

75

6.1.3 Parametrized arcs

The parametrizedArc class deals with curves that are defined from a function t ∈ [tmi n , tmax] ⇒ P (t) =
(x(t), y(t), z(t)) handled by a Parametrization object. When constructing a parametrizedArc, the following
specific keys are available:

key authorized types examples

_parametrization Parametrization object class Parametrization par(. . .);
_parametrization = par

_tmin, _tmax
Real value

_tmin=0, _tmax=1

_partitioning _linearPartition, _splinePartition _partitioning=_linearPartition
_nbParts integer value _nbParts=100

As GMSH does not deal with parametrized curve, when exporting parametrizedArc to GMSH, the curve has to
be split in smaller parts (segments or splines). Each part will be also discretized according to the general keys
_hsteps or _nnodes. _nnodes represents the number of nodes on the arc and should be chosen greater than
_nbParts. If not, XLIFE++ adjust it to guarantee that there are two nodes by parts. There are two possibilities to
set _hsteps, either giving a unique real value that is associated to each node of the partition, or giving a vector
of _nbParts + 1 values, each of them associated to each node of the partition.

For more details about Parametrization, see the section B.13. The only mandatory key is _parametrization,
if not redefined _tmin and _tmax take the values of bounds of the parametrization, the partition is the linear
one with 1 segment.

Greater is _nbParts better is the approximation of the parametrized arc.

As an illustration here is given the construction of a 2D mesh from a parametrized arc (split in 100 segments)
and a segment:

Parametrization ps (0 ,2* pi_ , x_1 * cos (x_1) , x_1 * sin (x_1) , Parameters () , " tcos (t) , t s i n (t) ") ;
ParametrizedArc pa (_parametrization = ps , _partitioning= _ l i n e a r P a r t i t i o n , _nbParts=100 ,

_hsteps =0.1 ,_domain_name="Gamma") ;
Segment sa (_v1=pa . p2 () , _v2=pa . p1 () , _hsteps =0.1 ,_domain_name="Sigma") ;
Mesh Me2(surfaceFrom (pa+sa , "Omega") , _tr iangle , 1 , _gmsh) ;

Note the way to get the end points of the parametrized arc that guarantee the contour is closed!

76

When the first and last points of the parametrized curve coincides, the curve is closed and can be used to build
the surface enclosed:

Parametrization pe (0 ,2* pi_ , 2 * cos (x_1) , sin (x_1) , Parameters () , "2cos (t) , sin (t) ") ;
ParametrizedArc pae (_parametrization = pe , _partitioning= _ l i n e a r P a r t i t i o n , _nbParts =50 ,

_hsteps =0.1 ,_domain_name="Gamma") ;
Mesh Mee(surfaceFrom (pae) , _tr iangle , 1 , _gmsh) ;

6.1.4 Spline arcs

SplineArc is the geometry class describing curves constructed from spline functions, either C2-spline, Catmull-
Rom, Bezier spline or B-spline (see section B.14 for a description of spline functions). The mandatory keys to
build a SplineArc geometry are

key authorized types examples

_spline_type _CatmullRomSpline, _C2Spline,
_BezierSpline, _BSpline

_spline_type=_BSpline

_spline_subtype _splineInterpolation,
_splineApproximation

_spline_subtype=_splineInterpolation

_vertices vector of Point (std::vector<Point> vp; . . .)
_vertices=vp

To close a curve, the last point must be equal to the first one.

_spline_subtype concerns only BSpline and _splineInterpolation is the default value in that case.

The standard factory of GMSH does not support the C2-spline. It is available in OpenCascad machin-
ery of GMSH which is not yet addressed by XLIFE++.

Besides standard keys (_domain_name, _side_names, _hsteps, _nnodes), all the parameters of spline classes
may be addressed with the following keys:

77

key authorized types examples

_spline_BC _naturalBC, _clampedBC,
_periodicBC

_spline_BC=_naturalBC

_tangent_0, _tangent_1
Reals

_tangent0=Reals(1.,0.)

_degree integer value _degree=3
_tension real value _tensionFactor=0.5
_spline_parametrization _xParametrization, _uniformPara-

metrization, _chordalParametrization,
_centripetalParametrization

_splineParametrization=
_uniformParametrization

_weights
Reals

(Reals w(10) . . .) _weights=w

_spline
Spline

(BSpline bsc(points). . .)
_spline=bsc

Default value of _spline_BC is _clampedBC. With this condition, the spline is clamped at the end
points and the tangential vectors are also prescribed. If you do not set the _tangent0, _tangent1

parameters, tangent vectors will be chosen as (1,0,0)! That means a 0 derivative at end points for C2 spline.
The _tension parameter concerns only Catmull-Rom spline, its default value is 0.5 that provides curves
realizing the best compromise (distance to the control points and curvatures).

These parameters are not available for any type of spline. They have default values regarding the type of spline,
that are suitable to use splines with GMSH. If you are a newbie, do not play with spline parameters. For advanced
users, read the section B.14 for more details.

By definition, the degree of a Bezier spline is equal to the number of control points minus one.
XLIFE++ is compliant with this definition but GMSH is not. A Bezier curve in GMSH is a union of

Bezier curves of degree 3 with several drawbacks : the curve is C0 but not necessary C1 and the number of
points must be of the form 3k +1. So, if you intend to generate a mesh with GMSH, only Bezier spline of
degree 3 with 4 control points are authorized. However, if you want to use multiple Bezier curves of degree
3, it is possible by concatenating several SplineArc build from Bezier spline of degree 3.

To mesh the surface enclosed by the x-axis and and a spline approximation of the sinus curve, let define six
points on the sinus curve

number_t n=5;
std : : vector <Point> points (n+1) ;
Real x=0 , dx=pi_ /n ;
for (number_t i =0; i <=n ; i ++ , x+=dx) points [i]= Point (x , sin (x)) ;

• mesh using Catmull-Rom spline

Segment s (_v1=points [5] , _v2=points [0] , _hsteps =0.1 ,_domain_name="Sigma") ;
SplineArc sa (_splineType=_CatmullRomSpline , _vertices=points ,

_domain_name="Gamma" , _hsteps =0.1) ;
Mesh msa(surfaceFrom (s+sa) , _tr iangle , 1 , _gmsh) ;

78

• mesh using B-spline

Segment s (_v1=points [5] , _v2=points [0] , _hsteps =0.1 ,_domain_name="Sigma") ;
SplineArc sa (_splineType=_BSpline , _vertices=points ,

_domain_name="Gamma" , _hsteps =0.1) ;
Mesh msa(surfaceFrom (s+sa) , _tr iangle , 1 , _gmsh) ;

• mesh using Bezier curve
As mentioned above, when GMSH is involved, only Bezier curve with 4 points are allowed:

n=3; points . resize (n+1) ;
x = 0 . ; dx=pi_ /n ;
for (number_t i =0; i <=n ; i ++ , x+=dx) points [i]= Point (x , sin (x)) ;
SplineArc sa (_splineType=_BezierSpline , _vertices=points ,

_domain_name="Gamma" , _hsteps =0.1) ;
Mesh msa(surfaceFrom (s+sa) , _tr iangle , 1 , _gmsh) ;

Obviously, Bezier approximation with 4 points is far away from the sinus curve!

To build a closed spline, it is sufficient to take the last control point same as the first control point. The following
example show a closed Catmull-Rom spline built from 6 points located on an ellipse:

number_t n=6;
vector <Point> pts (n+1) ;
Real s =0 , ds=2* pi_ /ns ;
for (number_t i =0; i <=n ; i ++ , ss+=ds) pts [i]= Point (2* cos (s) , sin (s)) ;
SplineArc sd (_splineType=_CatmullRomSpline , _vertices=pts ,

_domain_name="Gamma" , _hsteps =0.1) ;
Mesh msd(surfaceFrom (sd) , _tr iangle , 1 , _gmsh) ;

79

As splines are curves (1D objects) do not forget to construct the surface by invoking the surfaceFrom
command.

Note that users can access to the parametrization of a SplineArc and so on, to some particular quantities such
as parameter bounds, curvature, curvilinear abscissa, normal vector, ... (see the Parametrization class):

SplineArc sa (_splineType=_BSpline , _vertices=points , _hsteps =0.1) ;
const Parametrization& pa=sa . parametrization () ;
RealPair bs=pa . bounds () ;
Real tm=(bs . f i r s t +bs . second) / 2 ;
theCout<<" bounds ="<<bs<<eol ;
theCout<<"pa . curvature (tm) = "<<pa . curvature (tm) <<eol ;
theCout<<"pa . curabc (tm) = "<<pa . curabc (tm) <<eol ;
theCout<<"pa . normal (tm) = "<<pa . normal (tm) <<eol ;
theCout<<"pa . tangent (tm) = "<<pa . tangent (tm) <<eol ;

6.1.5 Polygons and polygon-likes

Polygons

A polygon is defined by its ordered list of vertices.

n1

sn1

n2sn2

n3

sn3

n4

sn4

n5 sn5

v1 v2

v3

v4

v5

To do so, you will use the parameter _vertices.
_nnodes can take one single value or a vector of values (Numbers object) and _hsteps can take one real value or
a vector of real values (Reals object). The vector sizes are the number of vertices (same as the number of edges
for a polygon). After these arguments, you can give names of main domain and side domains as explained in

80

preamble of this section.

Example:

std : : vector <Point> p(5) ;
p[0]= Point (0 . , 0 .) ;
p[1]= Point (8 . , 0 .) ;
p[2]= Point (9 . , 4 .) ;
p[3]= Point (5 . , 2 .) ;
p[4]= Point (1 . , 4 .) ;
Polygon poly1 (_vertices=p , _nnodes=Numbers(15 , 10 , 8 , 8 , 10) , _domain_name="Omega" ,

_side_names="Sigma") ;

Let’s summarize information about geometrical keys on polygons:

key authorized types examples

_vertices vector of Point (std::vector<Point> vp; . . .) _ver-
tices=vp

Triangles

To define a triangle, you give the 3 vertices.

n1

sn1

n2

sn2
n3 sn3

v1
v2

v3

There is a parameter for each of them: _v1, _v2 and _v3. These parameters take 2D or 3D points.
_nnodes can take one single value or a vector of 3 values (Numbers object) and _hsteps can take one real value
or a vector of 3 real values (Reals object). After these arguments, you can give names of main domain and side
domains as explained in preamble of this section.

Example:

Point a (− 1 . , 2 . , 0 .) ;
Point b (1 . , − 4 . , 2 .) ;
Point c (2 . , 3 . , 1 .) ;
Triangle t1 (_v1=a , _v2=b , _v3=c , _nnodes=Numbers(10 ,15 ,20) , _domain_name="Omega" ,

_side_names="Gamma") ;

Let’s summarize information about geometrical keys on triangles:

key(s) authorized types examples

_v1, _v2, _v3 Point _v1=Point(0.,0.), _v2=Point(0.,0.,0.)

Quadrangles

To define a quadrangle, you give the 4 vertices.

81

n1

sn1

n2sn2

n3

sn3

n4 sn1

v1 v2

v3

v4

There is a parameter for each of them: _v1, _v2, _v3 and _v4. These parameters take 2D or 3D points.
_nnodes can take one single value or a vector of 4 values (Numbers object) and _hsteps can take one real value
or a vector of 4 real values (Reals object). After these arguments, you can give names of main domain and side
domains as explained in preamble of this section.

Example:

Quadrangle q1 (_v1=Point (0 . , 0 .) , _v2=Point (2 . , 0 .) , _v3=Point (2 . , 1 .) , _v4=Point (0 . , 1 .) ,
_nnodes=Numbers(20 , 10 , 20 , 10) , _domain_name="Omega" , _side_names="Gamma") ;

Let’s summarize information about geometrical keys on quadrangles:

key(s) authorized types examples

_v1, _v2, _v3, _v4 Point _v1=Point(0.,0.), _v4=Point(0.,0.,0.)

Parallelograms

To define a parallelogram, you give 3 vertices. If you refer to the following figure, p3 is unnecessary.

n1

sn1

n2sn2

n3

sn3

n4 sn4

v1 v2

v3v4

There is a parameter for each of them: _v1, _v2, and _v4. These parameters take 2D or 3D points.
_nnodes can take one single value or a vector of 2 or 4 values (Numbers object) and _hsteps can take one real
value or a vector of 4 real values (Reals object). After these arguments, you can give names of main domain
and side domains as explained in preamble of this section.

Examples:

Parallelogram p1 (_v1=Point (0 . , 0 .) , _v2=Point (2 . , 0 .) , _v4=Point (0 . , 1 .) , _nnodes=Numbers(20 , 10 ,
20 , 10) , _domain_name="Omega" , _side_names="Gamma") ;

Parallelogram p2 (_v1=Point (0 . , 0 .) , _v2=Point (2 . , 0 .) , _v4=Point (0 . , 1 .) , _nnodes=Numbers(20 , 10) ,
_domain_name="Omega" , _side_names="Gamma") ;

Both parallelograms of previous examples are identical. This explains the ability to give 2 values for _nnodes.
Let’s summarize information about geometrical keys on paralellograms:

key(s) authorized types examples

_v1, _v2, _v4 Point _v1=Point(0.,0.), _v2=Point(0.,0.,0.)

82

Rectangles

To define a rectangle, you give 3 vertices, as for parallelograms.

n1

sn1

n2sn2

n3

sn3

n4 sn4

v1 v2

v3v4

c

There is a parameter for each of them: _v1, _v2, and _v4, as for Parallelogram. These parameters take 2D or
3D points.
For rectangles in plane z=0, where sides are parallel to x-axis and y-axis, you can define the rectangle by its
center (c in the figure) and its lengths or p1 (recalled origin in this case) and its lengths. You may use _center,
_xlength and _ylength or _origin, _xlength and _ylength to do so. _origin and _center take 2D or 3D points.
_xlength and _ylength take one single positive value.
There is another possibility : defining the rectangle by its bounds : parameters _xmin, _xmax, _ymin and _ymax.
These parameters take one single value.
_nnodes can take one single value or a vector of 2 or 4 values (Numbers object) and _hsteps can take one real
value or a vector of 4 real values (Reals object). After these arguments, you can give names of main domain
and side domains as explained in preamble of this section.

Examples:

Rectangle r1 (_v1=Point (0 . , 0 .) , _v2=Point (2 . , 0 .) , _v4=Point (0 . , 1 .) , _nnodes=Numbers(20 , 10) ,
_domain_name="Omega" , _side_names=Strings ("Gamma1" , "Gamma2" , "Gamma1" , "Gamma2")) ;

Rectangle r2 (_center=Point (1 . , 0 . 5) , _xlength =2. , _ylength =1. , _nnodes=Numbers(20 , 10) ,
_domain_name="Omega" , _side_names=Strings ("Gamma1" , "Gamma2" , "Gamma1" , "Gamma2")) ;

Rectangle r3 (_origin=Point (0 . , 0 .) , _xlength =2. , _ylength =1. , _nnodes=Numbers(20 , 10) ,
_domain_name="Omega" , _side_names=Strings ("Gamma1" , "Gamma2" , "Gamma1" , "Gamma2")) ;

Rectangle r3 (_xmin=0. , _xmax=2. , _ymin=0. , _ymax=1. , _nnodes=Numbers(20 , 10) ,
_domain_name="Omega" , _side_names=Strings ("Gamma1" , "Gamma2" , "Gamma1" , "Gamma2")) ;

This is 4 definitions of the same Rectangle object.
Let’s summarize information about geometrical keys on rectangles:

key(s) authorized types examples

_center, _origin Point _origin=Point(0.,0.), _cen-
ter=Point(0.,0.,0.)

_v1, _v2, _v4 Point _v1=Point(0.,0.), _v4=Point(0.,0.,0.)
_xlength, _ylength single unsigned integer or real positive value _xlength=1, _ylength=2.5
_xmin, _xmax,
_ymin, _ymax

single integer or real value _xmin=1, _ymax=-2.5

Squares

To define a square, you give 3 vertices, as for rectangles and parallelograms.

83

n1

sn1

n2sn2

n3

sn3

n4 sn4

v1 v2

v3v4

c

There is a parameter for each of them: _v1, _v2, and _v4, as for Parallelogram and Rectangle. These
parameters take 2D or 3D points.
For squares in plane z=0, where sides are parallel to x-axis and y-axis, you can define the SquareGeo by its center
(c in the figure) and its length or p1 (recalled origin in this case) and its length. You may use _center and _length
or _origin and _length to do so. _origin and _center take 2D or 3D points. _length takes one single positive
value.
_nnodes can take one single value or a vector of 2 or 4 values (Numbers object) and _hsteps can take one real
value or a vector of 4 real values (Reals object). After these arguments, you can give names of main domain
and side domains as explained in preamble of this section.

Examples.:

SquareGeo s1 (_v1=Point (0 . , 1 .) , _v2=Point (1 . , 1 .) , _v4=Point (0 . , 2 .) , _nnodes=Numbers(20 , 10) ,
_domain_name="Omega" , _side_names=Strings ("Gamma1" , "Gamma2" , "Gamma1" , "Gamma2")) ;

SquareGeo s2 (_center=Point (0 . 5 , 1 . 5) , _length =1. , _nnodes=Numbers(20 , 10) , _domain_name="Omega" ,
_side_names=Strings ("Gamma1" , "Gamma2" , "Gamma1" , "Gamma2")) ;

SquareGeo s3 (_origin=Point (0 . , 1 .) , _length =1. , _nnodes=Numbers(20 , 10) , _domain_name="Omega" ,
_side_names=Strings ("Gamma1" , "Gamma2" , "Gamma1" , "Gamma2")) ;

This is 3 definitions of the same SquareGeo object.

There is an alias to the SquareGeo object: SquareGeo. But it is only available when XLIFE++ is not
configured with OPENCASCADE, because OPENCASCADE provides a Square function and it may

result in a conflict.

Let’s summarize information about geometrical keys on squares:

key(s) authorized types examples

_center, _origin Point _origin=Point(0.,0.), _cen-
ter=Point(0.,0.,0.)

_v1, _v2, _v4 Point _v2=Point(0.,0.), _v4=Point(0.,0.,0.)
_length single unsigned integer or real positive value _length=1, _length=2.5

6.1.6 Ellipses and disks

Ellipses

To define an elliptic surface, you have to precise the plane where it is and the axis parameters. To define the
plane, you just have to give the center point (parameter _center) and 2 other points, in order to have 3 unaligned
points. These points are supposed to be both apogees of the ellipse (parameters _v1 and _v2), namely c , p1 and
p2 in the following figure:

84

c v1

v2

n1n2

n3 n4

sn1sn2

sn3 sn4

These parameters take 2D or 3D points.
When apogees are along x-axis and y-axis respectively, you can give axis lengths by using _xlength and _ylength
or semi-axis lengths by using _xradius and _yradius.
_nnodes can take one single value or a vector of 4 values (Numbers object), one for each quarter of ellipse.
_hsteps can take one real value or a vector of 4 real values (Reals object). After these arguments, you can give
names of main domain and side domains as explained in preamble of this section.
Furthermore, you can define elliptical sectors with two additionnal parameters: _angle1 and _angle2. Values of
angles are given in degree and can be any values, under the following behavior:

• Difference between angle values has to be smalller than 2π, but can be greater or equal than π.

• Modulos will be automatically used so that _angle2 will be greater than _angle1

• If the angular sector is greater or equal than π, an intermediate point is built at the intersection of the
ellipse and the bisector of the sector.

• Default value for _angle1 is 0.

• Default value for _angle2 is 2π.

sn4

sn1
ang l e1

ang l e2 c v1

v2sn2

sn3

sn3 sn1
ang l e1

ang l e2

c v1

v2

sn2

Whole ellipses _nnodes can take one single value or a vector of 4 values (Numbers object). _hsteps can take
one real value or a vector of 4 real values (Reals object).

Acute elliptical sectors _nnodes can take one single value or a vector of 3 values (Numbers object). _hsteps
can take one real value or a vector of 3 real values (Reals object).

Obtuse elliptical sectors _nnodes can take one single value or a vector of 4 values (Numbers object). _hsteps
can take one real value or a vector of 4 real values (Reals object).

After these arguments, you can give names of main domain and side domains as explained in the preamble of
this section.

85

Examples:

E l l i p s e e1 (_center=Point (0 . , 0 .) , _v1=Point (2 . , 0 .) , _v2=Point (0 . , 1 .) , _nnodes=Numbers(5 , 10 , 5 ,
10) , _domain_name="Omega" , _side_names=Strings ("Gamma5" , "Gamma10" , "Gamma5" , "Gamma10")) ;

E l l i p s e e2 (_center=Point (0 . , 0 . , 0 .) , _v1=Point (1 . , 0 . , 1 .) , _v2=Point (0 . , 1 . , 1 .) , _nnodes=40 ,
_domain_name="Omega" , _side_names="Gamma") ;

E l l i p s e e3 (_center=Point (0 . , 0 . , _xlength =2 , _ylength =3.5 , _nnodes=40 , _domain_name="Omega" ,
_side_names="Gamma" ;

Lets’ summarize information about geometrical keys on ellipses:

key(s) authorized types examples

_center, _v1, _v2 Point _center=Point(0.,0.),
_v2=Point(0.,0.,0.)

_xlength, _ylength,
_xradius, _yradius,
_angle1, _angle2

single unsigned integer or real positive value;
angles in radian

_xlength=1, _yradius=2.5, _an-
gle1=3*pi_/2

Disks

To define an disk, you have to precise the plane where it is and the radius parameters. To define the plane, you
just have to give the center point and 2 other points, in order to have 3 unaligned points. These points are
supposed to be doing a right angle with the center of the disk (as if they were apogees of an ellipse).

c v1

v2

n1n2

n3 n4

sn1sn2

sn3 sn4

To do so, you will use parameters _center, _v1 and _v2, as for an ellipse. These parameters take 2D or 3D points.
Furthermore, you can define disk sectors with two additionnal parameters: _angle1 and _angle2, as for the
Ellipse object.

sn4

sn1

ang l e1

ang l e2
c

v1

v2sn2

sn3

sn3 sn1

ang l e1
ang l e2

c

v1

v2
sn2

Whole disks _nnodes can take one single value or a vector of 4 values (Numbers object). _hsteps can take one
real value or a vector of 4 real values (Reals object).

86

Acute circular sectors _nnodes can take one single value or a vector of 3 values (Numbers object). _hsteps can
take one real value or a vector of 3 real values (Reals object).

Obtuse circular sectors _nnodes can take one single value or a vector of 4 values (Numbers object). _hsteps
can take one real value or a vector of 4 real values (Reals object).

After these arguments, you can give names of main domain and side domains as explained in the preamble of
this section.

Examples:

Disk d1 (_center=Point (0 . , 0 .) , _v1=Point (1 . , 0 .) , _v2=Point (0 . , 1 .) , _nnodes=Numbers(5 , 10 , 5 , 10) ,
_domain_name="Omega" , _side_names=Strings ("Gamma5" , "Gamma10" , "Gamma5" , "Gamma10")) ;

Disk d2 (_center=Point (0 . , 0 . , 0 .) , _v1=Point (1 . , 0 . , 1 .) , _v2=Point (0 . , 1 . , 1 .) , _nnodes=40 ,
_domain_name="Omega" , _side_names="Gamma") ;

Disk d3 (_center=Point (0 . , 0 .) , _radius =2.5 , _nnodes=40 , _domain_name="Omega" , _side_names="Gamma") ;

The Disk object has another name: Circle

Let’s summarize information about geometrical keys on disks:

key authorized types examples

_center, _v1, _v2 Point _center=Point(0.,0.),
_v1=Point(0.,0.,0.)

_radius, _angle1,
_angle2

single unsigned integer or real positive value _radius=1, _angle1=247.5

6.1.7 Parametrized surface

A ParametrizedSurface geometry is defined by a Parametrization handling a map (u, v) ∈ Ω̂→ P (u, v) ∈R3.
In most of cases, Ω̂ = [x1, x2]× [y1, y2]. Since mesh tools, generally, does not support this type of geometry
representation, two additional data must be provided, to describe how to partition the surface into small
representable pieces:

• the type of partition : linear or spline (key _partitioning with value _linearPartition or _splinePartition)

• the number of pieces in the partition (key _nbParts)

The following example shows the construction of a ParametrizedSurface using a parametrization defined by
a symbolic function and a linear partition with 50 pieces:

Parametrization pars (0 ,2* pi_ , 0 . , 2 * pi_ , x_1 , x_2 , cos (x_1) * cos (x_2) , Parameters ()) ;
ParametrizedSurface Psl (_parametrization = pars , _partitioning= _ l i n e a r P a r t i t i o n , _nbParts =50 ,

_hsteps =0.2 , _domain_name=sh , _side_names="Gamma") ;

87

The number of parts (triangles) is not strictly equal to 50 because the partitioning process consists in splitting
the u-direction and v-direction relatively to their lengths such the total number of triangles be close to 50. The
parameter _hsteps is propagated on all vertices of the triangle partition. It is not yet possible to manage dif-
ferent _hsteps. The side names are numbered relatively to the parametrization: v = vmi n , u = umax , v = vmax ,
u = umi n .

To get a good linear approximation of an oscillating surface, a lot of triangles are required, up to the desired
mesh ideally! This is why using a spline partition is a better solution:

ParametrizedSurface Pss (_parametrization = pars , _partitioning=_spl inePart i t ion , _nbParts =16 ,
_hsteps =0.2 , _domain_name=sh , _side_names="Gamma") ;

In addition to the standard keys (_hsteps, _domain_name, ...) only the following keys are available:

key authorized types examples

_parametrization, Parametrization object _parametrization=pars
_partitioning _linearPartition, _splinePartition _partitioning=_splinePartition
_nbParts unsigned int (Number) _nbParts=16

Be cautious, in any case the surface meshed is an approximated surface of the parametrized surface.
As spline partition uses interpolation splines, the approximation may be a quite good one.

Up to now, the ParametrizedSurface geometry can be meshed only with the OpenCascade engine!

88

6.1.8 Spline surface

A spline surface is a geometrical surface in 3D built from a Nurbs object (see subsection B.14.5), implicitly
parametrized by two scalars (u, v) ∈ [0,1]× [0,1]. It has at most 4 sides (some may be degenerated).

A SplineSurface geometry may be either constructed directly from a Nurbs object:

Number nbu=7 , m= 2*nbu+1 , n=nbu+1;
Real ds=pi_ /(2*nbu) ; r e a l _ t u=−pi_ /2 , v ;
Points pts (m*n) ;
for (Number i =0; i <=2*nbu ; i ++ ,u+=ds)
{ v =0;

for (Number j =0; j <=nbu ; j ++ ,v+=ds) pts [i *n+ j]= Point (cos (u) * cos (v) , cos (u) * sin (v) , sin (u)) ;
}
Nurbs nuI (_splineInterpolation , pts ,m,) ; / / interpolation nurbs
SplineSurface spsI (_spline=nuI , _hsteps =0.2 , _domain_name=sh ,

_side_names=Strings ("Gamma1" , "Gamma2" , "Gamma3" , "Gamma4")) ;

or using parameter keys:

SplineSurface sps (_vertices=pts , _nbu=m, _hsteps =0.2 , _domain_name=sh ,
_side_names=Strings ("Gamma1" , "Gamma2" , "Gamma3" , "Gamma4")) ;

Sides names order rule is v = 0, u = 1, v = 1 and u = 0. In the previous example, because some bound points
collapse, there are only two sides really named (v = 0 and v = 1), , corresponding to "Gamma1" and "Gamma3".

By using the option _splineApproximation, it is also possible to address approximation splines.

In addition to the standard keys (_hsteps,(_domain_name, ...) the following keys are available:

89

key authorized types examples

_spline
Nurbs

_spline=nu

_splineSubtype _splineInterpolation* or
_splineApproximation

_splineSubtype=_splineInterpolation

_vertices
Point vector (Points)

_vertices=pts

_weights
Real vector (Reals)

_weights=ws

_nbu unsigned int (Number) _nbu=5

Do not forget to specify the value nbu (either in Nurbs construction or in key) that specifies the number
of control/interpolation points in u-direction; the number of points in v-direction is deduced from

the size of control/interpolation point vector. It should be a multiple of nbu!

Up to now, such SplineSurface geometry can be meshed only with the OpenCascade engine!

6.1.9 Polyhedra and polyhedron-likes

Polyhedra

A polyhedron is defined by its faces. The list of faces is a vector of polygons (See subsection 6.1.5 for details).

To do so, you will use the parameter _faces. The only other parameter you may use is _domain_name, to set the
name of the polyhedral main domain. Everything else is defined by the faces.

Example:

std : : vector <Point> v (5) , v2 (4) ;
v [0]= Point (0 . , 0 . , 0 .) ; v [1]= Point (2 . , 0 . , 0 .) ; v [2]= Point (3 . , 1 . , 0 .) ; v [3]= Point (1 . , 4 . , 0 .) ;

v [4]= Point (− 1 . , 2 . , 0 .) ;
Polygon pg1 (_vertices=v , _domain_name="Gamma1") ;
v [0]= Point (0 . , 0 . , 1 .) ; v [1]= Point (2 . , 0 . , 1 .) ; v [2]= Point (3 . , 1 . , 1 .) ; v [3]= Point (1 . , 4 . , 1 .) ;

v [4]= Point (− 1 . , 2 . , 1 .) ;
Polygon pg2 (_vertices=v , _domain_name="Gamma2") ;
v2 [0]= Point (0 . , 0 . , 0 .) ; v2 [1]= Point (2 . , 0 . , 0 .) ; v2 [2]= Point (2 . , 0 . , 1 .) ; vs2 [3]= Point (0 . , 0 . , 1 .) ;
Polygon pg3 (_vertices=v2 , _domain_name="Sigma") ;
v2 [0]= Point (2 . , 0 . , 0 .) ; v2 [1]= Point (3 . , 1 . , 0 .) ; v2 [2]= Point (3 . , 1 . , 1 .) ; v2 [3]= Point (2 . , 0 . , 1 .) ;
Polygon pg4 (_vertices=v2 , _domain_name="Sigma") ;
v2 [0]= Point (3 . , 1 . , 0 .) ; v2 [1]= Point (1 . , 4 . , 0 .) ; v2 [2]= Point (1 . , 4 . , 1 .) ; v2 [3]= Point (3 . , 1 . , 1 .) ;
Polygon pg5 (_vertices=v2 , _domain_name="Sigma") ;
v2 [0]= Point (1 . , 4 . , 0 .) ; v2 [1]= Point (− 1 . , 2 . , 0 .) ; v2 [2]= Point (− 1 . , 2 . , 1 .) ; v2 [3]= Point (1 . , 4 . , 1 .) ;

90

Polygon pg6 (_vertices=v2 , _domain_name="Sigma") ;
v2 [0]= Point (− 1 . , 2 . , 0 .) ; v2 [1]= Point (0 . , 0 . , 0 .) ; v2 [2]= Point (0 . , 0 . , 1 .) ; v2 [3]= Point (− 1 . , 2 . , 1 .) ;
Polygon pg7 (_vertices=v2 , _domain_name="Sigma") ;
std : : vector <Polygon> faces (7) ;
faces [0]= pg1 ; faces [1]= pg2 ; faces [2]= pg3 ; faces [3]= pg4 ; faces [4]= pg5 ; faces [5]= pg6 ; faces [6]= pg7 ;
Polyhedron poly1 (_faces=faces , _domain_name="Omega") ;

Let’s summarize information about geometrical keys on polyhedra:

key authorized types examples

_faces vector of Polygon (std::vector<Polygon> vp; . . .)
_faces=vp

Tetrahedra

To define a tetrahedron, you give the 4 vertices.

n1

n5n4

n2n3

n6

v1 v2

v3

v4

sn1sn2

sn3sn4

There is a parameter for each of them: _v1, _v2, _v3 and _v4. These parameters take 3D points.
_nnodes can take one single value or a vector of 6 values (Numbers object) and _hsteps can take one real value
or a vector of 4 real values (Reals object). After these arguments, you can give names of main domain and side
domains as explained in preamble of this section.

Example:

Point a (1 . , 0 . , 0 .) , b (0 . , 1 . , 0 .) , c (0 . , 0 . , 1 .) , d (0 . , 0 . , 0 .) ;
Tetrahedron t1 (_v1=a , _v2=b , _v3=c , _v4=d , _nnodes=10 , _domain_name="Omega" , _side_names="Gamma") ;

Let’s summarize information about geometrical keys on tetrahedra:

key(s) authorized types examples

_v1, _v2, _v3, _v4 Point _v1=Point(0.,0.,0.)

Hexahedra

To define a hexahedron, you just have to give the 8 vertices, defined as in the following figure.

91

n1

n10

n5

n9

n8

n7

n6
n11

n2
n4

n12

n3

v1 v2

v3
v4

v5

v6

v7v8

sn1

sn2

sn3

sn4

sn5 sn6

There is a parameter for each of them: _v1, _v2, _v3, _v4, _v5, _v6, _v7 and _v8. These parameters take
points or a single value (in this case, it is like a 1D point). _nnodes can take one single value or a vector of 12
values (Numbers object) and _hsteps can take one real value or a vector of 8 real values (Reals object). After
these arguments, you can give names of main domain and side domains as explained in preamble of this section.

Examples:

Point a (0 . , 0 . , 0 .) , b (4 . , 0 . , 0 .) , c (4 . , 2 . , 0 .) , d (0 . , 2 . , 0 .) ;
Point aa (0 . , 0 . , 1 .) , bb (4 . , 0 . , 1 .) , cc (4 . , 2 . , 1 .) , dd (0 . , 2 . , 1 .) ;
Hexahedron h1 (_v1=a , _v2=b , _v3=c , _v4=d , _v5=aa , _v6=bb , _v7=cc , _v8=dd , _nnodes=Numbers(40 , 20 ,

40 , 20 , 40 , 20 , 40 , 20 , 10 , 10 , 10 , 10) , _domain_name="Omega") ;

Let’s summarize information about geometrical keys on hexahedra:

key(s) authorized types examples

_v1, _v2, _v3, _v4,
_v5, _v6, _v7, _v8

Point _v4=Point(0.,0.,0.)

Parallelepipeds

To define a parallelepiped, you just have to give 4 vertices (namely p1, p2, p4 and p5), defined as in the following
figure :

n1

n10

n5

n9

n8

n7

n6

n11

n2n4

n12

n3

v1 v2

v3v4

v5 v6

v7v8

sn1

sn2

sn3

sn4

sn5 sn6

There is a parameter for each of them: _v1, _v2, _v4, and _v5. These parameters take points or a single value (in
this case, it is like a 1D point). _nnodes can take one single value or a vector of 3 or 12 values (Numbers object)
and _hsteps can take one real value or a vector of 8 real values (Reals object). After these arguments, you can
give names of main domain and side domains as explained in preamble of this section.

92

At last, you can give an additional argument: the number of octants to deal with (parameter _nboctants). Let us
explain this with the following figure:

octant 1octant 2

octant 3 octant 4

octant 5octant 6

octant 7 octant 8

v1 v2

v3v4

v5 v6

v7v8

c

Considering the center of the parallelepiped, and the associated trihedron, symbolized by black dashed arrows,
the parallelepiped can be splitted into 8 parallelepipedic parts, corresponding to one octant. Octants having a
numbering convention, When giving the number of octants he asked, for instance 5, the user wants to build
intersection of the parallelepiped with octants 1 to 5. The default value is 8, so that the whole parallelepiped is
considered.
This is a way to define some specific geometries, such as:

• the Fichera Parallelepiped (7 octants):

n1

n19

n11

n16

n7

n15

n10

n9

n8

n17

n4n21

n12

n20

n2
n3

n6

n18

n5
n14

n13

p1

p2p3

p4 p5

p6p7

p8

p9

p10

p11

p12

p13p14

sn1

sn2

sn3

sn4

sn5

sn6

sn7 sn8
sn9

• the big L-shape (6 octants):

n4

n16

n3

v2 n9

n14n5
n13

n8

n7

n6

n15

n2
n18

n10

n17

n1

n12 n11

p1

p3 p4

p5p6

p7

p8

p9

p10

p11 p12

sn1

sn2

sn3

sn4

sn5 sn6

sn7 sn8

• the parallelepiped with 5 octants:

93

n14

n18
n13

n21 n3

n12

n4v9

v10 v13

n9

n16n5
n15

n8

n7

n6

n17

n2
n20

n10

n1

n19

n11

p1

p2 p3

p4p5

p6

p7

p8

p11

p12p14

sn1

sn2

sn3

sn4

sn5

sn6

sn7 sn8
sn9

• the small L-shape (3 octants):

n1

n14

n7
n13

n12

n11
n10n9

n8
n17

n4

n3n2

n15

n16

n6

n18

n5

p1

p2p3

p4

p5
p6 p7

p8

p9

p10

p11

p12

sn1

sn2

sn3

sn4

sn5

sn6

sn7

sn8

Examples:

Point a (0 . , 0 . , 0 .) , b (4 . , 0 . , 0 .) , c (4 . , 2 . , 0 .) , d (0 . , 2 . , 0 .) ;
Point aa (0 . , 0 . , 1 .) , bb (4 . , 0 . , 1 .) , cc (4 . , 2 . , 1 .) , dd (0 . , 2 . , 1 .) ;
Parallelepiped p1 (_v1=a , _v2=b , _v4=d , _v5=aa , _nnodes=Numbers(40 , 20 , 40 , 20 , 40 , 20 , 40 , 20 ,

10 , 10 , 10 , 10) , _domain_name="Omega") ;
Parallelepiped p2 (_v1=a , _v2=b , _v4=d , _v5=aa , _nnodes=Numbers(40 , 20 , 10) , _domain_name="Omega") ;

Both parallelepipeds of previous examples are identical. This explains the ability to give 3 values for _nnodes.
Let’s summarize information about geometrical keys on parallelepipeds:

key(s) authorized types examples

_v1, _v2, _v4, _v5 Point _v5=Point(0.,0.,0.)
_nboctants single unsigned integer value between 1 and

8
_nboctants=3

Cuboids

To define a cuboid, you give 4 vertices, as for parallelepipeds.

94

n1

n10

n5

n9

n8

n7

n6

n11

n2n4

n12

n3

v1 v2

v3v4

v5 v6

v7v8

sn1

sn2

sn3

sn4

sn5 sn6

There is a parameter for each of them: _v1, _v2, _v4, and _v5. These parameters take points or a single value (in
this case, it is like a 1D point). For cuboids where faces are parallel to planes x=0, y=0 and z=0, you can define
the cuboid by its center (c in the figure) and its lengths or p1 (recalled origin in this case) and its lengths. You
may use _center, _xlength, _ylength and _zlength or _origin, _xlength, _ylength and _zlength to do so. _origin
and _center take points or a single value (in this case, it is like a 1D point). _xlength, _ylength and _zlength
take one single positive value. There is another possibility : defining the rectangle by its bounds : parameters
_xmin, _xmax, _ymin, _ymax, _zmin and _zmax. These parameters take one single value.
_nnodes can take one single value or a vector of 3 or 12 values (Numbers object) and _hsteps can take one real
value or a vector of 8 real values (Reals object).
At last, you can give an additional argument: the number of octants to deal with (parameter _nboctants).
After these arguments, you can give names of main domain and side domains as explained in preamble of this
section.
Examples:

Cuboid c1 (_v1=Point (0 . , 0 . , 0 .) , _v2=Point (2 . , 0 . , 0 .) , _v4=Point (0 . , 3 . , 0 .) , _v5=Point (0 . , 0 . , 4 .) ,
_nnodes=40 , _domain_name="Omega") ;

Cuboid c2 (_origin=Point (0 . , 0 . , 0 .) , _xlength =2. , _ylength =3. , _zlength =4 , _nnodes=40 ,
_domain_name="Omega") ;

Cuboid c3 (_center=Point (1 . , 1 . 5 . , 2 .) , _xlength =2. , _ylength =3. , _zlength =4 , _nnodes=40 ,
_domain_name="Omega") ;

Cuboid c4 (_xmin=0 , _xmax=2 , _ymin=0 , _ymax=3 , _zmin=0 , _zmax=4 , _nnodes=40 , _domain_name="Omega") ;

This is 4 definitions of the same Cuboid object.
Let’s summarize information about geometrical keys on cuboids:

key(s) authorized types examples

_center, _origin Point _center=Point(0.,0.,0.)
_v1, _v2, _v4, _v5 Point _v1=Point(0.,0.,0.)
_xlength, _ylength,
_zlength

single unsigned integer or real positive value _xlength=1, _zlength=2.5

_xmin, _xmax,
_ymin, _ymax,
_zmin, _zmax

single integer or real value _xmin=1, _zmin=-2.5

_nboctants single unsigned integer value between 1 and
8

_nboctants=3

95

Cubes

To define a cube, you give 4 vertices, as for parallelepipeds and cuboids.

n1

n10

n5

n9

n8

n7

n6

n11

n2n4

n12

n3

v1 v2

v3v4

v5 v6

v7v8

c

sn1

sn2

sn3

sn4

sn5 sn6

There is a parameter for each of them: _v1, _v2, _v4, and _v5. These parameters take points or a single value (in
this case, it is like a 1D point). For cuboids where faces are parallel to planes x=0, y=0 and z=0, you can define
the cuboid by its center (c in the figure) and its lengths or p1 (recalled origin in this case) and its lengths. You
may use _center and _length or _origin and _length to do so. _origin and _center take points or a single value
(in this case, it is like a 1D point). _length take one single positive value.
_nnodes can take one single value or a vector of 3 or 12 values (Numbers object) and _hsteps can take one real
value or a vector of 8 real values (Reals object).
At last, you can give an additional argument: the number of octants to deal with (parameter _nboctants).
After these arguments, you can give names of main domain and side domains as explained in preamble of this
section.
Examples:

Cube c1 (_v1=Point (0 . , 0 . , 0 .) , −V2=Point (4 . , 0 . , 0 .) , _v4=Point (0 . , 4 . , 0 .) , _v5=Point (0 . , 0 . , 4 .) ,
_nnodes=40 , _domain_name="Omega") ;

Cube c2 (_origin=Point (0 . , 0 . , 0 .) , _length =2. , _nnodes=40 , _domain_name="Omega") ;
Cube c3 (_center=Point (1 . , 1 . , 1 .) , _length =2. , _nnodes=40 , _domain_name="Omega") ;

This is 3 definitions of the same Cube object.
Let’s summarize information about geometrical keys on cubes:

key(s) authorized types examples

_center, _origin Point _center=Point(0.,0.,0.)
_v1, _v2, _v4, _v5 Point _v1=Point(0.,0.,0.)
_length single unsigned integer or real positive value _length=1, _length=2.5
_nboctants single unsigned integer value between 1 and

8
_nboctants=3

96

6.1.10 Ellipsoids and balls

Ellipsoids

To define an ellipsoidal volume, you do the same way as for an ellipse or a disk (See section 6.1.6 or section 6.1.6),
namely using 4 points c, p1, p2, p6, defined as in the following figure:

c v1

v2

v6

n1n2

n3 n4

n5n6

n7 n8

n9

n10

n11

n12

sn1sn2

sn3 sn4

sn5sn6

sn7 sn8

There is a parameter for each of them: _center, _v1, _v2, and _v6. These parameters take points or a single
value (in this case, it is like a 1D point). For ellipsoidal volumes where main axes are parallel to x-axis, y-axis and
z-axis, you can define the ellipsoid with the center and 3 axis lengths. For this purpose, use _xlength, _ylength
and _zlength, taking one single positive value. You can also give semi-axis lengths by using _xradius, _yradius
and _zradius.
_nnodes can take one single value or a vector of 3 or 12 values (Numbers object), one for each quarter of ellipse.
_hsteps can take one real value or a vector of 6 real values (Reals object). After these arguments, you can give
names of main domain and side domains as explained in preamble of this section.
At last, you can give an additional argument: the number of octants to deal with (parameter _nboctants), as for
Parallelepiped, Cuboid and Cube objects. Let us explain this with the following figure:

octant 1octant 2

octant 3 octant 4

octant 5octant 6

octant 7 octant 8

c v1

v2

v6

Considering the center of the ellipsoid, and the associated trihedron, symbolized by black dashed arrows, the
ellipsoid can be splitted into 8 parts, corresponding to one octant. Octants having a numbering convention,
When giving the number of octants he asked, for instance 5, the user wants to build intersection of the ellipsoid
with octants 1 to 5. The default value is 8, so that the whole ellipsoid is considered.
This is a way to define some specific geometries, such as:

• the Fichera ellipsoid (7 octants):

97

n15

n13n14

p1 p2

p3

p4

p5

p6

p7

n1n2

n3 n4

n5n6

n7 n8

n9

n10

n11

n12

sn1sn2

sn3 sn4

sn5sn6

sn7

sn8

sn9

sn10

• the big ellipsoidal L-shape (6 octants):

n15

n12n13 n14

p1 p2

p3

p4

p5

p6

p7

n1n2

n3 n4

n5n6

n7 n8

n9

n10

n11

sn1sn2

sn3 sn4

sn5

sn6

sn7

sn8

sn9

sn10

• the ellipsoid with 5 octants:

n15

n11

n13
n12 n14

p1 p2

p3

p4

p5

p6

p7

n1n2

n3 n4

n5n6

n7

n8

n9

n10

sn1sn2

sn3 sn4

sn5sn6

sn7

sn8

sn9

sn10

• the half ellipsoid (4 octants):

98

n9

n11
n10 n12

p1 p2

p3

p4

p5

p6

n1n2

n3 n4

n5n6 n7

n8

sn1sn2

sn3 sn4

sn5sn6

sn7 sn8

• the small ellipsoidal L-shape (3 octants):

n12

n8

n10
n9 n11

p1 p2

p3

p4

p5

p6

n1n2

n3

n4n5 n6

n7

sn1sn2

sn3

sn4 sn5

sn6sn7

sn8

• the quarter of ellipsoid (2 octants):

n9

n6

n8
n7 p1

p2

p3

p4

p5

n1n2

n3n4 n5

sn1sn2

sn3 sn4

sn5sn6

• the eighth of ellipsoid(1 octants):

n6

n4

n5

p1
p2

p3

p4

n1

n2n3

sn1

sn2

sn3

sn4

99

Examples:

Ellipsoid e1 (_center=Point (0 . , 0 . , 0 .) , _v1=Point (3 . , 0 . , 0 .) , _v2=Point (0 . , 2 . , 0 .) ,
_v6=Point (0 . , 0 . , 1 .) , _nnodes=Numbers(35 , 30 , 25) , _domain_name="Omega1" ,
_side_names="Gamma") ;

Ellipsoid e2 (_center=Point (0 . , 0 . , 0 .) , _v1=Point (3 . , 0 . , 0 .) , _v2=Point (0 . , 2 . , 0 .) ,
_v6=Point (0 . , 0 . , 1 .) , _nnodes=Numbers(35 , 35 , 35 , 35 , 30 , 30 , 30 , 30 , 25 , 25 , 25 , 25) ,
_domain_name="Omega1" , _side_names="Gamma") ;

Ellipsoid e3 (_center=Point (0 . , 0 . , 0 .) , _xlength =6 , _ylength =4 , _zlength =2 , _nnodes=Numbers(35 , 30 ,
25) , _domain_name="Omega1" , _side_names="Gamma") ;

This is 3 definitions of the same Ellipsoid object. The difference between e1 and e2 explains the ability to give
3 values for _nnodes.
Let’s summarize information about geometrical keys on ellipsoids:

key(s) authorized types examples

_center, _v1, _v2,
_v6

Point _center=Point(0.,0.,0.)

_xlength, _ylength,
_zlength, _xradius,
_yradius, _zradius

single unsigned integer or real positive value _xlength=1, _zradius=2.5

_nboctants single unsigned integer value between 1 and
8

_nboctants=3

Balls

To define a ball, you do the same way as for an ellipsoid (See section 6.1.10), namely using 4 points c , p1, p2, p6,
defined as in the following figure:

c v1

v2

v6

n1n2

n3 n4

n5n6

n7 n8

n9

n10

n11

n12

sn1sn2

sn3 sn4

sn5sn6

sn7 sn8

There is a parameter for each of them: _center, _v1, _v2, and _v6. These parameters take points or a single
value (in this case, it is like a 1D point). For balls where main axes are parallel to x-axis, y-axis and z-axis, you
can define the ellipsoid with the center and the radius. For this purpose, use _radius, taking one single positive
value.
_nnodes can take one single value or a vector of 3 or 12 values (Numbers object), one for each quarter of ellipse.
_hsteps can take one real value or a vector of 6 real values (Reals object). After these arguments, you can give
names of main domain and side domains as explained in preamble of this section.
At last, you can give an additional argument: the number of octants to deal with (parameter _nboctants). See
section 6.1.9 for details.

100

Examples:

Ball b1 (_center=Point (0 . , 0 . , 0 .) , _v1=Point (3 . , 0 . , 0 .) , _v2=Point (0 . , 3 . , 0 .) , _v6=Point (0 . , 0 . , 3 .) ,
_nnodes=Numbers(35 , 30 , 25) , _domain_name="Omega1" , _side_names="Gamma") ;

Ball b2 (_center=Point (0 . , 0 . , 0 .) , _v1=Point (3 . , 0 . , 0 .) , _v2=Point (0 . , 3 . , 0 .) , _v6=Point (0 . , 0 . , 3 .) ,
_nnodes=Numbers(35 , 35 , 35 , 35 , 30 , 30 , 30 , 30 , 25 , 25 , 25 , 25) , _domain_name="Omega1" ,
_side_names="Gamma") ;

Ball b3 (_center=Point (0 . , 0 . , 0 .) , _radius =3 , _nnodes=Numbers(35 , 30 , 25) , _domain_name="Omega1" ,
_side_names="Gamma") ;

This is 3 definitions of the same Ball object. The difference between b1 and b2 explains the ability to give 3
values for _nnodes.

The Ball object has another name: Sphere

Let’s summarize information about geometrical keys on balls:

key(s) authorized types examples

_center, _v1, _v2,
_v6

Point _center=Point(0.,0.,0.)

_radius single unsigned integer or real positive value _radius=1, _radius=2.5
_nboctants single unsigned integer value between 0 and

8
_nboctants=3

6.1.11 Trunks and trunk-likes

Trunks

A trunk is a generalized truncated cone. To define a trunk, you need to give a surface, namely a polygonal
surface (Polygon, Triangle, Quadrangle, Parallelogram, Rectangle, or SquareGeo), or a elliptical surface
(Ellipse or Disk). To define the other surface, you just need to give a point of this surface (or i g i n), and the
scale factor according to the first surface.
For a trunk with polygonal basis, or i g i n is the equivalent of the first vertex of the surface you give, as you can
see on the following figure of a trunk with triangular basis. The triangle being defined by its vertices p1, p2 and
p3, or i g i n is the equivalent of p1:

n[2]

n[0] n[5]

n[3]

n[6]

n[7]

n[8]

n[1]

n[4]

v1

v2

v3

or i g i n

sn1

sn2

sn3

sn4

sn5

To do so, you will use parameter _basis to define the basis, parameter _origin to define or i g i n, and parameter
_scale to define the scale factor.
_basis takes any surface object : Polygon, Triangle, Quadrangle, Parallelogram, Rectangle, SquareGeo,
Ellipse or Disk. _origin takes a point or a single value (in this case, it is like a 1D point). _scale takes one
single positive value.

101

For a trunk with elliptical basis, or i g i n is the center of the second basis, as you can see on the following figure
of a trunk with elliptical basis.

n9

n10

n11

n12

c1

v1

v2

c2

n1

n2

n3

n4

n5

n6n7

n8

sn1

sn2

sn3

sn4

sn5

sn6

To do so, you will use parameters _center1, _v1, _v2, _center2 and _scale to define such a trunk. _center1, _v1,
_v2 and _center2 take a point or a single value (in this case, it is like a 1D point). _center1, _v1 and _v2 are
used as for a Ellipse or Disk object (see section 6.1.6 or section 6.1.6 for details). _center2 is used in this case
instead of _origin, as it is the center of the second basis.
_nnodes can take one single value or a vector of 3 or n values (Numbers object), where n is 3 times the number
of edges of the basis. _hsteps can take one real value or a vector of p real values (Reals object), where p is the
number of points defining the trunk. After these arguments, you can give names of main domain and side
domains as explained in preamble of this section.

Examples:

Trunk t1 (_basis=Triangle (_v1=Point (0 . , 0 . , 0 .) , _v2=Point (3 . , 0 . , 0 .) , _v3=Point (0 . , 2 . , 0 .)) ,
_origin=Point (0 . , 2 . , 1 .) , _scale =0.5 , _nnodes=Numbers(10 , 10 , 10 , 5 , 5 , 5 , 20 , 20 , 20) ,
_domain_name="Omega" , _side_names=Strings ("Gamma" , "Gamma" , "Sigma" , "Sigma" , "Sigma")) ;

Trunk t2 (_basis=Triangle (_v1=Point (0 . , 0 . , 0 .) , _v2=Point (3 . , 0 . , 0 .) , _v3=Point (0 . , 2 . , 0 .)) ,
_origin=Point (0 . , 2 . , 1 .) , _scale =0.5 , _nnodes=Numbers(10 , 5 , 20) , _domain_name="Omega" ,
_side_names=Strings ("Gamma" , "Gamma" , "Sigma" , "Sigma" , "Sigma")) ;

This is 2 definitions of the same Trunk object, explaining the ability to give 3 values for _nnodes, instead of 9.
Let’s summarize information about geometrical keys on trunks:

key(s) authorized types examples

_basis Polygon, Triangle, Quadrangle,
Parallelogram, Rectangle, SquareGeo,
Ellipse, Disk

_basis=Triangle(. . .)

_origin Point _origin=Point(0.,0.,0.)
_scale single unsigned integer or real positive value _scale=2, _scale=0.5
_center1, _center2,
_v1, _v2

Point _center1=Point(0.,0.,0.)

Cylinders

A cylinder is a truncated cone whose apex is at infinite distance. So it is the geometry defined by the extrusion
of a surface by translation.

102

n9

n10

n11

n12

c1

v1

v2

c2

n1

n2n3

n4

n5

n6n7

n8

sn1

sn2

sn3

sn4sn5

sn6

To do so, you have to use parameters _basis and _direction. _basis, as for trunks, take any surface object:
Polygon, Triangle, Quadrangle, Parallelogram, Rectangle, SquareGeo, Ellipse or Disk. _direction
takes a vector of real numbers (Point or Reals objects) or a single value (in this case, it is like a direction
parallel to x-axis).
As for a trunk, a cylinder with elliptical basis can be defined by another way, using parameters _center1, _v1,
_v2 and _center2, taking a point or a single value (in this case, it is like a 1D point). _center1, _v1 and _v2 are
used as for a Ellipse or Disk object (see section 6.1.6 or section 6.1.6 for details). _center2 is used in this case
instead of _direction, as it is easier to give the center of the second basis, instead of the direction vector.
_nnodes can take one single value or a vector of 3 or n values (Numbers object), where n is 3 times the number
of edges of the basis. _hsteps can take one real value or a vector of p real values (Reals object), where p is the
number of points defining the trunk. After these arguments, you can give names of main domain and side
domains as explained in preamble of this section.

Examples:

Cylinder c1 (_basis=Disk (_center=Point (0 . , 0 . , 0 .) , _v1=Point (2 . , 0 . , 0 .) , _v2=Point (0 . , 2 . , 0 .)) ,
_direction=Point (0 . , 2 . , 1 .) , _nnodes=Numbers(10 , 10 , 10 , 10 , 5 , 5 , 5 , 5 , 20 , 20 , 20 , 20) ,
_domain_name="Omega" , _side_names=Strings ("Gamma" , "Gamma" , "Sigma" , "Sigma" , "Sigma" ,
"Sigma")) ;

Cylinder c2 (_basis=Disk (_center=Point (0 . , 0 . , 0 .) , _v1=Point (2 . , 0 . , 0 .) , _v2=Point (0 . , 2 . , 0 .)) ,
_direction=Point (0 . , 2 . , 1 .) , _scale =0.5 , _nnodes=Numbers(10 , 5 , 20) , _domain_name="Omega" ,
_side_names=Strings ("Gamma" , "Gamma" , "Sigma" , "Sigma" , "Sigma" , "Sigma")) ;

Cylinder c3 (_center1=Point (0 . , 0 . , 0 .) , _v1=Point (2 . , 0 . , 0 .) , _v2=Point (0 . , 2 . , 0 .)) ,
_center2=Point (0 . , 2 . , 1 .) , _scale =0.5 , _nnodes=Numbers(10 , 5 , 20) , _domain_name="Omega" ,
_side_names=Strings ("Gamma" , "Gamma" , "Sigma" , "Sigma" , "Sigma" , "Sigma")) ;

This is 3 definitions of the same Cylinder object, explaining the ability to give 3 values for _nnodes, instead of
12.
Let’s summarize information about geometrical keys on cylinders:

103

key(s) authorized types examples

_basis Polygon, Triangle, Quadrangle,
Parallelogram, Rectangle, SquareGeo,
Ellipse, Disk

_basis=Triangle(. . .)

_direction std::vector of real values, Reals or Point _direction=Reals(0.,0.,1.), _direc-
tion=Point(0.,0.,1.)

_center1, _center2,
_v1, _v2

Point _center1=Point(0.,0.,0.)

Prisms

A prism is by definition a cylinder whose basis is a polygonal surface (Polygon, Triangle, Quadrangle,
Parallelogram, Rectangle, or SquareGeo).

n1

n8

n4

n7

n6
n5

n2n3

n9

v1 v2

v3

sn1

sn2

sn3

sn4sn5

As for cylinder, you will use parameters _basis and _direction. _basis, as for trunks, take any polygonal object:
Polygon, Triangle, Quadrangle, Parallelogram, Rectangle or SquareGeo. _direction takes a vector of real
numbers (Point or Reals objects) or a single value (in this case, it is like a direction parallel to x-axis).
Often a prism refers to a cylinder with triangular basis (as the finite element cell). So you can also define a prism
from 3 points (for triangular basis), using parameters _v1, _v2, _v3 instead of _basis, taking a point or a single
value (in this case, it is like a 1D point).
_nnodes can take one single value or a vector of 3 or n values (Numbers object), where n is 3 times the number
of edges of the basis. _hsteps can take one real value or a vector of p real values (Reals object), where p is the
number of points defining the trunk. After these arguments, you can give names of main domain and side
domains as explained in preamble of this section.

Examples:

Prism p1 (_basis=Triangle (_v1=Point (0 . , 0 . , 0 .) , _v2=Point (2 . , 0 . , 0 .) , _v3=Point (0 . , 1 . , 0 .)) ,
_direction=Reals (0 . , 2 . , 1 .) , _nnodes=Numbers(10 , 10 , 10 , 5 , 5 , 5 , 20 , 20 , 20) ,
_domain_name="Omega" , _side_names=Strings ("Gamma" , "Gamma" , "Sigma" , "Sigma" , "Sigma")) ;

Prism p2 (_basis=Triangle (_v1=Point (0 . , 0 . , 0 .) , _v2=Point (2 . , 0 . , 0 .) , _v3=Point (0 . , 1 . , 0 .)) ,
_direction=Reals (0 . , 2 . , 1 .) , _nnodes=Numbers(10 , 5 , 20) , _domain_name="Omega" ,
_side_names=Strings ("Gamma" , "Gamma" , "Sigma" , "Sigma" , "Sigma")) ;

Prism p3 (_v1=Point (0 . , 0 . , 0 .) , _v2=Point (2 . , 0 . , 0 .) , _v3=Point (0 . , 1 . , 0 .) ,
_direction=Reals (0 . , 2 . , 1 .) , _nnodes=Numbers(10 , 5 , 20) , _domain_name="Omega" ,
_side_names=Strings ("Gamma" , "Gamma" , "Sigma" , "Sigma" , "Sigma")) ;

This is 3 definitions of the same Prism object, explaining the ability to give 3 values for _nnodes, instead of 9.

104

Let’s summarize information about geometrical keys on prisms:

key(s) authorized types examples

_basis Polygon, Triangle, Quadrangle,
Parallelogram, Rectangle, SquareGeo

_basis=Triangle(. . .)

_direction std::vector of real values, Reals or Point _direction=Reals(0.,0.,1.), _direc-
tion=Point(0.,0.,1.)

_v1, _v2, _v3 Point _v2=Point(0.,0.,0.)

Cones

A cone is defined by a surface and an apex.

n5

n6

n7

n8

c1

v1

v2

apex

n1

n2n3

n4

sn1

sn2

sn3

sn4

sn5

To do so, you will use parameters _basis and _apex. _basis, as for trunks, take any surface object: Polygon,
Triangle, Quadrangle, Parallelogram, Rectangle, SquareGeo, Ellipse or Disk. _apex takes a point or a
single value (in this case, it is like a 1D point).
As for trunks and cylinders, you can also define directly a cone with elliptical basis, with parameters _center1,
_v1, _v2 (and _apex). These parameters take a point or a single value (in this case, it is like a 1D point).
_nnodes can take one single value or a vector of 2 or n values (Numbers object), where n is twice the number of
edges of the basis. _hsteps can take one real value or a vector of p real values (Reals object), where p is the
number of points defining the trunk. After these arguments, you can give names of main domain and side
domains as explained in preamble of this section.

Examples:

Cone c1 (_basis=Disk (_center=Point (0 . , 0 . , 0 .) , _v1=Point (2 . , 0 . , 0 .) , _v2=Point (0 . , 2 . , 0 .)) ,
_apex=Point (0 . . , 0 . , 1 .) , _nnodes=Numbers(20 , 20 , 20 , 20 , 10 , 10 , 10 , 10) ,
_domain_name="Omega" , _side_names="Gamma") ;

Cone c2 (_basis=Disk (_center=Point (0 . , 0 . , 0 .) , _v1=Point (2 . , 0 . , 0 .) , _v2=Point (0 . , 2 . , 0 .)) ,
_apex=Point (0 . . , 0 . , 1 .) , _nnodes=Numbers(20 , 10) , _domain_name="Omega" , _side_names="Gamma") ;

Cone c3 (_center1=Point (0 . , 0 . , 0 .) , _v1=Point (2 . , 0 . , 0 .) , _v2=Point (0 . , 2 . , 0 .) ,
_apex=Point (0 . . , 0 . , 1 .) , _nnodes=Numbers(20 , 10) , _domain_name="Omega" , _side_names="Gamma") ;

This is 3 definitions of the same Cone object, explaining the ability to give 2 values for _nnodes, instead of 8.

Actually, this geometry cannot be meshed directly. Please use Pyramid for cones with polygonal basis,
or RevCone for revolution cones.

Let’s summarize information about geometrical keys on cones:

105

key(s) authorized types examples

_apex, _center1,
_v1, _v2

Point _apex=Point(0.,0.,0.)

_basis Polygon, Triangle, Quadrangle,
Parallelogram, Rectangle, SquareGeo,
Ellipse, Disk

_basis=Triangle(. . .)

Pyramids

A pyramid is a cone with a polygonal basis (Polygon, Triangle, Quadrangle, Parallelogram, Rectangle, or
SquareGeo).

n8

n1
n4

n5

n2

n6

n3

n7

apex

v2

v3v4

v1

sn1

sn2

sn3

sn4

sn5

As for cones, you will use parameters _basis and _apex. _basis takes any polygonal object: Polygon, Triangle,
Quadrangle, Parallelogram, Rectangle or SquareGeo. _apex takes a point or a single value (in this case, it
is like a 1D point).
Often a pyramid refers to a cone with quadrangular basis (as the finite element cell). So you can also define a
pyramid from 4 points (for quadrangular basis), using parameters _v1, _v2, _v3, _v4 instead of _basis, taking a
point or a single value (in this case, it is like a 1D point).
_nnodes can take one single value or a vector of 2 or n values (Numbers object), where n is twice the number of
edges of the basis. _hsteps can take one real value or a vector of p real values (Reals object), where p is the
number of points defining the trunk. After these arguments, you can give names of main domain and side
domains as explained in preamble of this section.

Examples:

Pyramid p1 (_basis=Quadrangle (_v1=Point (0 . , 0 . , 0 .) , _v2=Point (2 . , 0 . , 0 .) , _v3=Point (1 . , 1 . , 0 .) ,
_v4=Point (− 1 . , 2 . , 0 .)) , _apex=Point (0 . , 0 . , 1 .) , _nnodes=Numbers(20 , 20 , 20 , 20 , 10 , 10 , 10 ,
10) , _domain_name="Omega" , _side_names="Gamma") ;

Pyramid p2 (_basis=Quadrangle (_v1=Point (0 . , 0 . , 0 .) , _v2=Point (2 . , 0 . , 0 .) , _v3=Point (1 . , 1 . , 0 .) ,
_v4=Point (− 1 . , 2 . , 0 .)) , _apex=Point (0 . , 0 . , 1 .) , _nnodes=Numbers(20 , 10) , _domain_name="Omega" ,
_side_names="Gamma") ;

Pyramid p3 (_v1=Point (0 . , 0 . , 0 .) , _v2=Point (2 . , 0 . , 0 .) , _v3=Point (1 . , 1 . , 0 .) , _v4=Point (− 1 . , 2 . , 0 .) ,
_apex=Point (0 . , 0 . , 1 .) , _nnodes=Numbers(20 , 10) , _domain_name="Omega" , _side_names="Gamma") ;

This is 3 definitions of the same Pyramid object, explaining the ability to give 2 values for _nnodes, instead of 8.
Let’s summarize information about geometrical keys on pyramids:

106

key(s) authorized types examples

_apex, _v1, _v2,
_v3, _v4

Point _apex=Point(0.,0.,0.)

_basis Polygon, Triangle, Quadrangle,
Parallelogram, Rectangle, SquareGeo

_basis=Triangle(. . .)

Revolution trunks

A revolution trunk is a right trunk with circular basis.

n9

n10

n11

n12

c1

v1

v2

c2

n1

n2n3

n4

n5

n6n7

n8

sn1 sn2

sn3

sn4

sn5

sn6

So, to define a revolution trunk, you just need to give centers and radiuses of bases, using dedicated parameters
_center1, _center2, taking a point or a single value (in this case, it is a 1D point), and _radius1 and _radius2,
taking one single positive value.
RevTrunk offers you more geometry abilities. Indeed, you can decide to add extensions at ends of the revolution
trunk. Extensions can be : none, flat, ellipsoid, or cone. To define an extension, you just have to give its
shape (type GeometricEndShape, values : _gesNone, _gesFlat, _gesEllipsoid or _gesCone) and its height (called
distance, as it is the distance of the apex/apogee from the corresponding basis of the trunk). Default values are
flat with no height. Please also note that any extension means 4 additional edges and 4 additional side domains.

n9

n10

n11

n12

n13

n14

n15

n16 n17

n18
n19

n20
c1

v1

v2

c2

To do so, you will use parameters _end1_shape and _end2_shape, taking a GeometricEndShape, and _end1_distance
and _end2_distance, taking one single positive value.
_nnodes can take one single value or a vector of 3 or n values (Numbers object), where n is 3 times the number
of edges of the basis. _hsteps can take one real value or a vector of p real values (Reals object), where p is the
number of points defining the trunk. After these arguments, you can give names of main domain and side
domains as explained in preamble of this section.
You also have an additional parameter, _nbsubdomains, enabling you to slice the main trunk (without its
extensions) in as many domains as you want.
Let’s summarize information about geometrical keys on revolution trunks:

107

key(s) authorized types examples

_center1, _center2 Point _center2=Point(0.,0.,0.)
_radius1, _radius2 single unsigned integer or real positive value _radius1=1, _radius2=2.5
_end1_shape,
_end2_shape

enum GeometricEndShape _end1_shape=gesNone,
_end2_shape=gesFlat,
_end2_shape=gesCone,
_end1_shape=gesEllipsoid,
_end2_shape=gesSphere

_end1_distance,
_end2_distance

single unsigned integer or real positive value _end1_distance=1,
_end2_distance=2.5

_nbsubdomains single unsigned integer value _nbsubdomains=2

Revolution cylinders

A revolution cylinder is a revolution trunk where both radiuses are equal. So, we need centers of both bases,
and the radius.

n9

n10

n11

n12

c1

v1

v2

c2

n1

n2n3

n4
n5

n6n7

n8

sn1 sn2

sn3

sn4sn5

sn6

To do so, you just have to give centers and radius of bases, using dedicated parameters _center1, _center2,
taking a point or a single value (in this case, it is a 1D point), and _radius, taking one single positive value.
As RevTrunk, RevCylinder offers you the ability to add extensions at ends of the revolution cylinder. See sec-
tion 6.1.11 for how to define these extensions. To do so, you will use parameters _end1_shape and _end2_shape,
taking a GeometricEndShape, and _end1_distance and _end2_distance, taking one single positive value.
_nnodes can take one single value or a vector of 3 or n values (Numbers object), where n is 3 times the number
of edges of the basis. _hsteps can take one real value or a vector of p real values (Reals object), where p is the
number of points defining the cylinder. After these arguments, you can give names of main domain and side
domains as explained in preamble of this section.
You also have an additional parameter, _nbsubdomains, enabling you to slice the main cylinder (without its
extensions) in as many domains as you want.

Examples:

RevCylinder r1 (\ center1=Point (0 . , 0 . , 0 .) , _center2=Point (5 . , 0 . , 0 .) , _radius =1 , _nnodes=Numbers(10 ,
10 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 50 , 50 , 50 , 50) , _domain_name="Omega" ,
_side_names=Strings ("Gamma" , "Gamma" , "Sigma" , "Sigma" , "Sigma" , "Sigma")) ;

RevCylinder r2 (\ center1=Point (0 . , 0 . , 0 .) , _center2=Point (5 . , 0 . , 0 .) , _radius =1 , _nnodes=Numbers(10 ,
10 , 50) , _domain_name="Omega" , _side_names=Strings ("Gamma" , "Gamma" , "Sigma" , "Sigma" ,
"Sigma" , "Sigma")) ;

Let’s summarize information about geometrical keys on revolution cylinders:

108

key(s) authorized types examples

_center1, _center2 Point _center1=Point(0.,0.,0.)
_radius single unsigned integer or real positive value _radius=1, _radius=2.5
_end1_shape,
_end2_shape

enum GeometricEndShape _end1_shape=gesNone,
_end2_shape=gesFlat,
_end1_shape=gesCone,
_end2_shape=gesEllipsoid,
_end1_shape=gesSphere

_end1_distance,
_end2_distance

single unsigned integer or real positive value _end1_distance=1,
_end2_distance=2.5

_nbsubdomains single unsigned integer value _nbsubdomains=2

Revolution cones

A revolution cone is a revolution trunk where second radius is equal to 0.

n5

n6

n7

n8

c1

v1

v2

apex

n1

n2n3

n4

sn1

sn2

sn3

sn4

sn5

To define a revolution cone, you need to give a center, a radius, and an apex, through parameters _center,
_radius ans _apex. _center and _apex take a point or a single value (in this case, it is like a 1D point), whereas
_radius takes a single positive value.
As RevTrunk, RevCone offers you more the ability to add an extension to the basis of a revolution cone. See
section 6.1.11 for how to define this extension. To do so, you will use parameters _end_shape, taking a
GeometricEndShape, and _end_distance, taking one single positive value.
_nnodes can take one single value or a vector of 2 or n values (Numbers object), where n is twice the number
of edges of the basis. _hsteps can take one real value or a vector of p real values (Reals object), where p is
the number of points defining the cone. After these arguments, you can give names of main domain and side
domains as explained in preamble of this section.
You also have an additional parameter, _nbsubdomains, enabling you to slice the main cone (without its
extension) in as many domains as you want.
Let’s summarize information about geometrical keys on revolution cones:

109

key(s) authorized types examples

_apex, _center Point _apex=Point(0.,0.,0.)
_radius single unsigned integer or real positive value _radius=1, _radius=2.5
_end_shape enum GeometricEndShape _end_shape=gesNone,

_end_shape=gesFlat,
_end_shape=gesCone,
_end_shape=gesEllipsoid,
_end_shape=gesSphere

_end_distance single unsigned integer or real positive value _end_distance=1, _end_distance=2.5
_nbsubdomains single unsigned integer value _nbsubdomains=2

6.1.12 Definition of a geometry from its boundary

A loop geometry is a geometry defined by its boundaries. For example, instead of defining a triangle, you will
define here the surface inside the closed boundary composed of 3 segments.
With XLIFE++ geometry engine, you can define 2D or 3D geometries, thanks to the following routines:

Geometry planeSurfaceFrom (const Geometry& boundary , String domName = String ()) ;
Geometry ruledSurfaceFrom (const Geometry& boundary , String domName = String ()) ;
Geometry volumeFrom(const Geometry& boundary , String domName = String ()) ;

The first argument must be a "composite" geometry defined from curve boundaries (2D case) or surface
boundaries (3D case) such that the result is closed.
Let’s see an example using segments and circular arcs to define a mesh on a rectangle with rounded corners:

Point a (−1.5 , −4.) ; Point b (1 . 5 , − 4 .) ; Point c (2 . , − 3 . 5) ; Point d (2 . , 3 . 5) ;
Point e (1 . 5 , 4 .) ; Point f (− 1 . 5 , 4 .) ; Point g (− 2 . , 3 . 5) ; Point h(−2. , −3.5) ;
Segment s1 (_v1=a , _v2=b , _nnodes=21 , _domain_name="AB") ;
CircArc c1 (_center=Point (3 . 5 , 0 . 5) , _v1=b , _v2=c , _nnodes=5 , _domain_name="BC") ;
Segment s2 (_v1=c , _v2=d , _nnodes=11 , _domain_name="CD") ;
CircArc c2 (_center=Point (3 . 5 , 1 . 5) , _v1=d , _v2=e , _nnodes=5 , _domain_name="DE") ;
Segment s3 (_v1=e , _v2=f , _nnodes=21 , _domain_name="EF") ;
CircArc c3 (_center=Point (0 . 5 , 1 . 5) , _v1=f , _v2=g , _nnodes=5 , _domain_name="FG") ;
Segment s4 (_v1=g , _v2=h , _nnodes=11 , _domain_name="GH") ;
CircArc c4 (_center=Point (0 . 5 , 0 . 5) , _v1=h , _v2=a , _nnodes=5 , _domain_name="HA") ;
Geometry g=planeSurfaceFrom (s1+c1+s2+c2+s3+c3+s4+c4 , "Omega") ;

The planeSurfaceFrom routine (or shorter surfaceFrom) is devoted to define surfaces from their boundaries.
Segments and circular arcs must be defined with the same orientation (clockwise or counter-clockwise).
With such definitions of segments s1, s2, s3 and s4 and circular arcs c1, c2, c3 and c4, in previous example, the
following definitions are right :

Geometry g=planeSurfaceFrom (s2+c2+s3+c3+s4+c4+s1+c1 , "Omega") ;
Geometry g=planeSurfaceFrom (s1+s2+s3+s4+c1+c2+c3+c4 , "Omega") ;

The order of components here, and also the first component, has no meaning, but they all are oriented in the
same way.

110

s1

s2

s3

s4

c1 c2

c3c4

a

b

c d

e

f

gh

Figure 6.1: Rectangular geometry with rounded corners, defined with the surfaceFrom routine

We tell you that it is also possible for 3D case. Here is an example of a geometry basically composed of a cube
and a pyramid sharing one face:

Point a (0 , 0 , 0) ; Point b(2 , 0 , 0) ; Point c (2 , 2 , 0) ; Point d(0 , 2 , 0) ;
Point e (0 , 0 , 2) ; Point f (2 , 0 , 2) ; Point g (2 , 2 , 2) ; Point h(0 , 2 , 2)
Point i (4 , 1 , 1) ;
SquareGeo s1 (_v1=a , _v2=b , _v4=e , _nnodes=11 , _domain_name="S1") ;
SquareGeo s2 (_v1=d , _v2=c , _v4=h , _nnodes=11 , _domain_name="S2") ;
SquareGeo s3 (_v1=a , _v2=b , _v4=d , _nnodes=11 , _domain_name="S3") ;
SquareGeo s4 (_v1=e , _v2=f , _v4=h , _nnodes=11 , _domain_name="S4") ;
SquareGeo s5 (_v1=a , _v2=d , _v4=e , _nnodes=11 , _domain_name="S5") ;
Triangle t1 (_v1=b , _v2=c , _v3=i , _nnodes=11 , _domain_name="T1") ;
Triangle t2 (_v1=c , _v2=g , _v3=i , _nnodes=11 , _domain_name="T2") ;
Triangle t3 (_v1=g , _v2=f , _v4=i , _nnodes=11 , _domain_name="T3") ;
Triangle t4 (_v1=f , _v2=b , _v4=i , _nnodes=11 , _domain_name="T4") ;
Geometry vf=volumeFrom(s1+s2+s3+s4+s5+t1+t2+t3) ;

a b

cd

e f

gh

i

Figure 6.2: 3D geometry defined with the volumeFrom routine

3D loop geometries can be defined by a mix of 2D loop geometries and 2D canonical geometries.

Although C++ authorizes it, do not write loop geometries as follows:
volumeFrom(Rectangle(a,b,d,11,11,"R1")+...);. You have to define the rectangle r1 instead, as in the

previous example.

111

6.1.13 Combining geometries

A composite geometry is a geometry defined from a list of canonical or loop geometries. It is for example the
right way to define holes in your mesh, or to define multi-domains geometries.
How to define composite geometries ? It’s easy, you just have to use the operators + and -.
Let’s see a first example:

Rectangle r (_xmin=−3, _xmax=3 , _ymin=−2, _ymax=2 , _nnodes=Numbers(33 ,22) , _domain_name="Omega") ;
E l l i p s e e (_center=Point (0 , 0) , _xlength =1 , _ylength =0.5 , _nnodes=11) ;
Geometry gm=r −e ;
Geometry gp=r+e ;

Figure 6.3: Composite geometry of an ellipse inside a rectangle

In both cases, the ellipse is geometrically inside the rectangle. This hole will be meshed if you used the operator
+, and not meshed if you use the operator -. Both operators can detect if a geometry is inside another geometry,
in most of the cases, but the operator - always consider the second geometry as a hole of the first one, even if it
is geometrically wrong.

If you forget to give a domain name for the right hand side of the operator +, it will not be stored,
so that you still will have a hole.

These operators work with any geometries as far as geometrical inclusion is easy enough to detect.
Using operators + and - to define composite geometries is not restricted to 2 components. You can define
composite geometries with any number of components, and some of them can be loop geometries:

E l l i p s e e1 (_center=Point (0 . , 0 .) , _v1=Point (4 , 0 .) , _v2=Point (0 . , 5 .) , _nnodes=12 ,
_domain_name="Omega1") ;

Point a (−1.5 , −4.) ; Point b (1 . 5 , − 4 .) ; Point c (2 . , − 3 . 5) ; Point d (2 . , 3 . 5) ;
Point e (1 . 5 , 4 .) ; Point f (− 1 . 5 , 4 .) ; Point g (− 2 . , 3 . 5) ; Point h(−2. , −3.5) ;
Segment s1 (_v1=a , _v2=b , _nnodes=21 , _domain_name="AB") ;
CircArc c1 (_center=Point (3 . 5 , 0 . 5) , _v1=b , _v2=c , _nnodes=5 , _domain_name="BC") ;
Segment s2 (_v1=c , _v2=d , _nnodes=11 , _domain_name="CD") ;
CircArc c2 (_center=Point (3 . 5 , 1 . 5) , _v1=d , _v2=e , _nnodes=5 , _domain_name="DE") ;
Segment s3 (_v1=e , _v2=f , _nnodes=21 , _domain_name="EF") ;
CircArc c3 (_center=Point (0 . 5 , 1 . 5) , _v1=f , _v2=g , _nnodes=5 , _domain_name="FG") ;
Segment s4 (_v1=g , _v2=h , _nnodes=11 , _domain_name="GH") ;
CircArc c4 (_center=Point (0 . 5 , 0 . 5) , _v1=h , _v2=a , _nnodes=5 , _domain_name="HA") ;
Geometry sf1 =(surfaceFrom (s1+c1+s2+c2+s3+c3+s4+c4 , "Omega2") ;
E l l i p s e e2 (_center=Point (1 . , 2 .) , _v1=Point (1 . 5 , 2 .) , _v2=Point (1 . , 3 .) , _nnodes=12 ,

_domain_name="Omega3") ;
E l l i p s e e3 (_center=Point (0 . , 0 .) , _v1=Point (0 . 5 , 0 .) , _v2=Point (0 . , 1 .) , _nnodes=12 ,

_domain_name="Omega4") ;
Rectangle r2 (_xmin=5. , _xmax=6. , _ymin=0. , _ymax=1. , _nnodes=6 , _domain_name="Omega5") ;
Segment s5 (_v1=Point (5 . 3 , 0 . 5) , _v2=Point (5 . 7 , 0 . 5) , _nnodes=5) ;
CircArc c5 (_center=Point (5 . 5 , 0 . 5) , _v1=Point (5 . 7 , 0 . 5) , _v2=Point (5 . 5 , 0 . 7) , _nnodes=5) ;
CircArc c6 (_center=Point (5 . 5 , 0 . 5) , _v1=Point (5 . 5 , 0 . 7) , _v2=Point (5 . 3 , 0 . 5) , _nnodes=5) ;
Geometry sf2=surfaceFrom (s5+c5+c6 , "Omega6") ;
Geometry gmulti =(e1+sf1) −(e2+e3) +r2 −sf2 ;

112

Figure 6.4: Composite geometry with multiple components and inclusions between components

When at least 2 components share several vertices, several edges and/or several surfaces, everything
works fine, shared geometrical entities are not duplicated.

Figure 6.5: Composite geometry with edges shared by components.

As far as composite geometries are concerned, XLIFE++ detects inclusions between canonical components. It
is not always the case if components are loop geometries. Let’s take the previous example, but this time, we
want to mesh every domain.

Geometry gmulti2 =(e1+sf1) +(e2+e3) +r2+sf2 ;

Figure 6.6: Composite geometry with multiple components and inclusions between components. Some
inclusions are not detected correctly.

You can see that both holes of the rounded rectangle are not taken into account, whereas the half disk is
correctly managed. Indeed, XLIFE++ can in most of the cases determine if a loop geometry is inside a canonical
geometry but it can’t determine if a canonical geometry is inside a loop geometry.

How to solve this problem ? By forcing it with the unary ! operator, and rewriting the composite expression if
necessary, as in the following:

113

Geometry gmulti3=e1+(sf1 + ! (e2+e3) +r2+sf2 ;

Figure 6.7: Composite geometry with multiple components and inclusions between components. Some
inclusions are forced.

When you write sf1+!(e2+e3), you tell explicitely that the right operand (e2+e3) is forced be inside the left
operand (sf1).

When at least two components intersect and the intersection has same dimension (2 surfaces whose
intersection is a surface, for instance), the resulting mesh will not be generated properly. In this case,

you must reconsider how to define your geometry.

Figure 6.8: Partial inclusion is forbidden

6.2 Transformations on geometries

XLIFE++ allows you to apply geometrical transformations on Mesh, Geometry and Geometry children objects.
The main type is Transformation. It can be a canonical transformation or a composition of transformations.

6.2.1 Canonical transformations

In the following, we will consider straight lines and planes.
A straight line is fully defined by a point and a direction. The latter is a vector of components (2 or 3). This is a

reason why we will write a straight line as follows :
(
Ω, d⃗

)
114

A plane is fully defined by a point and a normal vector. This is a reason why we will write a plane as follows :
[Ω, n⃗]

Translations

Point B is the image of point A by a translation of vector u⃗ if and only if

−→
AB = u⃗

A translation can be defined by a STL vector (size 2 or 3) or its components:

Vector<Real> u ;
Real ux , uy , uz ;
Translation t1 (u) , t2 (ux , uy) , t3 (ux , uy , uz) ;

u can be omitted. If so, its default value is the 3d zero vector. uy and uz can be omitted too. If so,
their default value is 0.

As the Vector class inherits from std::vector you can use it in place of Vector because all proto-
types are based on std::vector.

2d rotations

Point B is the image of point A by the 2d rotation of centerΩ and of angle θ if and only if

−−→
ΩB =

(
cosθ −sinθ
sinθ cosθ

)−−→
ΩA

A 2d rotation is defined by a point and an angle (in radians):

Point omega ;
Real angle ;
Rotation2d r (omega, angle) ;

angle can be omitted. If so, its default value is 0 and omega can be omitted too. If so, its default
value is the 3d zero point.

3d rotations

Point B is the image of point A by the 3d rotation of axis
(
Ω, d⃗

)
and of angle θ (in radians) if and only if

−−→
ΩB = cosθ

−−→
ΩA+ (1−cosθ)

−−→
ΩA · n⃗ + sinθ n⃗ ∧−−→

ΩA (Rodrigues’ rotation formulae)

where n⃗ = u⃗

||u⃗|| (the unitary direction).

The direction can be defined by a STL vector or by its components:

Point omega ;
Vector<Real> d ;
Real dx , dy , dz ;
Real theta ;
Rotation3d r1 (omega, d , theta) , r2 (omega, dx , dy , dz , theta) ;

115

In the first syntax, angle can be omitted. If so, its default value is 0. and d can also be omitted. If
so, its default value is the 3d zero vector.

In the second syntax, dz can be omitted too. If so, its default value is 0.

Homotheties

Point B is the image of point A by the homothety of centerΩ and of factor k if and only if

−−→
ΩB = k

−−→
ΩA

Point omega (1 . , 2 . , 3 .) ;
Real k = 2 . ;
Homothety h(omega, k) ;

factor can be omitted. If so, its default value is 0. and omega can also be omitted. If so, its default
value is the 3d zero vector.

Point reflections

Point B is the image of point A by the point reflection of centerΩ if and only if s

−−→
ΩB =−−−→ΩA

It is an homothety of factor -1 and same center.

Point omega (1 . , 2 . , 3 .) ;
PointReflection h(omega) ; / / omega can s t i l l be omitted , as f o r homothety

2d reflections

Point B is the image of point A by the 2d reflection of axis
(
Ω, d⃗

)
if and only if

−→
AB = 2

−−→
AH where H is the orthogonal projection of A on

(
Ω, d⃗

)
Point omega (1 . , 2 . , 3 .) ;
Vector<Real> d (1 . , 0 . , 0 .) ;
Real dx =1. , dy = 0 . ;
Reflection2d r1 (omega, d) , r2 (omega, dx , dy) ;

In the first syntax, d can be omitted. If so, its default value is the 2d zero vector and omega can be
omitted. If so, its default value is the 2d zero point.

3d reflections

Point B is the image of point A by the 2d reflection of plane [Ω, n⃗] if and only if

−→
AB = 2

−−→
AH where H is the orthogonal projection of A on [Ω, n⃗]

116

Point omega (1 . , 2 . , 3 .) ;
Vector<Real> n ;
Real nx , ny , nz ;
Reflection3d r1 (omega, n) , r2 (omega, nx , ny , nz) ;

In the first syntax, n can be omitted. If so, its default value is the 3d zero vector and omega can be
omitted. If so, its default value is the 3d zero point.

6.2.2 Composition of transformations

To define a composition of transformations, you can use the operator * between canonical transformations, an
is the following example:

Rotation2d r1 (Point (0 . , 0 .) , 120.) ;
Reflection2d r2 (Point (1 . , − 1 .) , 1 . , 2 . 5 , −3.) ;
Translation t1 (− 1 . , 4 .) ;
Homothety h (Point (− 1 . , 0 .) , −3.2) ;
Transformation t = r1 *h* r2 * t1 ;

Composition * has to be understood as usual composition operator ◦ : t(P)=r1(h(r2(t1(P)))).

6.2.3 Applying transformations

How to apply a transformation ?

In this paragraph, we will look at the Cube object, but you have same functions for any canonical or composite
Geometry.
If you want to apply a transformation and modify the input object, you can use one of the following functions:

/ / ! apply a geometrical transformation on a Cube
Cube& Cube : : transform (const Transformation& t) ;
/ / ! apply a translat ion on a Cube

Cube& Cube : : translate (std : : vector <Real> u = std : : vector <Real > (3 , 0 .)) ;
Cube& Cube : : translate (Real ux , Real uy = 0 . , Real uz = 0 .) ;
/ / ! apply a rotation 2d on a Cube

Cube& Cube : : rotate2d (const Point& c = Point (0 . , 0 .) , Real angle = 0 .) ;
/ / ! apply a rotation 3d on a Cube

Cube& Cube : : rotate3d (const Point& c = Point (0 . , 0 . , 0 .) , std : : vector <Real> u =
std : : vector <Real > (3 , 0 .) , Real angle = 0 .) ;

Cube& Cube : : rotate3d (Real ux , Real uy , Real angle) ;
Cube& Cube : : rotate3d (Real ux , Real uy , Real uz , Real angle) ;
Cube& Cube : : rotate3d (const Point& c , Real ux , Real uy , Real angle) ;
Cube& Cube : : rotate3d (const Point& c , Real ux , Real uy , Real uz , Real angle) ;
/ / ! apply a homothety on a Cube

Cube& Cube : : homothetize (const Point& c = Point (0 . , 0 . , 0 .) , Real f a c t o r = 1 .) ;
Cube& Cube : : homothetize (Real f a c t o r) ;
/ / ! apply a point r e f l e c t i o n on a Cube

Cube& Cube : : pointReflect (const Point& c = Point (0 . , 0 . , 0 .)) ;
/ / ! apply a r e f l e c t i o n 2 d on a Cube

Cube& Cube : : reflect2d (const Point& c = Point (0 . , 0 .) , std : : vector <Real> u =
std : : vector <Real > (2 , 0 .)) ;

Cube& Cube : : reflect2d (const Point& c , Real ux , Real uy = 0 .) ;
/ / ! apply a r e f l e c t i o n 3 d on a Cube

Cube& Cube : : reflect3d (const Point& c = Point (0 . , 0 . , 0 .) , std : : vector <Real> u =
std : : vector <Real > (3 , 0 .)) ;

Cube& Cube : : reflect3d (const Point& c , Real ux , Real uy , Real uz = 0 .) ;

117

For instance,

Cube c ;
c . translate (0 . , 0 . , 1 .) ;

If you want now to create a new Cube by applying a transformation on a Cube, you should use one of the
following functions instead:

/ / ! apply a geometrical transformation on a Cube (external)
Cube transform (const Cube& m, const Transformation& t) ;
/ / ! apply a translat ion on a Cube (external)

Cube translate (const Cube& m, std : : vector <Real> u = std : : vector <Real > (3 , 0 .)) ;
Cube translate (const Cube& m, Real ux , Real uy = 0 . , Real uz = 0 .) ;
/ / ! apply a rotation 2d on a Cube (external)

Cube rotate2d (const Cube& m, const Point& c = Point (0 . , 0 .) , Real angle = 0 .) ;
/ / ! apply a rotation 3d on a Cube (external)

Cube rotate3d (const Cube& m, const Point& c = Point (0 . , 0 . , 0 .) , std : : vector <Real> u =
std : : vector <Real > (3 , 0 .) , Real angle = 0 .) ;

Cube rotate3d (const Cube& m, Real ux , Real uy , Real angle) ;
Cube rotate3d (const Cube& m, Real ux , Real uy , Real uz , Real angle) ;
Cube rotate3d (const Cube& m, const Point& c , Real ux , Real uy , Real angle) ;
Cube rotate3d (const Cube& m, const Point& c , Real ux , Real uy , Real uz , Real angle) ;
/ / ! apply a homothety on a Cube (external)

Cube homothetize (const Cube& m, const Point& c = Point (0 . , 0 . , 0 .) , Real f a c t o r = 1 .) ;
Cube homothetize (const Cube& m, Real f a c t o r) ;
/ / ! apply a point r e f l e c t i o n on a Cube (external)

Cube pointReflect (const Cube& m, const Point& c = Point (0 . , 0 . , 0 .)) ;
/ / ! apply a r e f l e c t i o n 2 d on a Cube (external)

Cube reflect2d (const Cube& m, const Point& c = Point (0 . , 0 .) , std : : vector <Real> u =
std : : vector <Real > (2 , 0 .)) ;

Cube reflect2d (const Cube& m, const Point& c , Real ux , Real uy = 0 .) ;
/ / ! apply a r e f l e c t i o n 3 d on a Cube (external)

Cube reflect3d (const Cube& m, const Point& c = Point (0 . , 0 . , 0 .) , std : : vector <Real> u =
std : : vector <Real > (3 , 0 .)) ;

Cube reflect3d (const Cube& m, const Point& c , Real ux , Real uy , Real uz = 0 .) ;

For instance,

Cube c1 ;
Cube c2=translate (c1 , 0 . , 0 . , 1 .) ;

Of course, you can not apply a 2d rotation or a 2d reflection for geometries defined by 3d points !

What does a transformation really do ?

Applying a transformation on an object means computing the image of each point defining the object. But it
can also change names.
When you create a new object by applying a transformation on a object, names are modified. Indeed, the
transformation add a suffix "_prime". It concerns geometry names and sidenames.

When you transform a Geometry, it also apply the transformation on the underlying bounding box.

118

6.3 Extrusion of geometries

This is another way to define geometries : by extrusion of geometries of lesser dimension. Extruded geometries
can be surfaces or volumes, defined by a geometry (the section of the extruded geometry) and a geometrical
transformation. This feature can be used to generate meshes with the GMSH interface with some restrictions
about the transformation : only translations or rotations are authorized. There is also another parameter : the
number of layers. Let’s see the following figures:

x

y

z

x

y

z

Figure 6.9: On the left, extrusion of a disk by a translation, with 3 layers. On the right, extrusion of a circular arc
by rotation, with 4 layers

6.3.1 How to apply an extrusion ?

XLIFE++ offers 4 variants of the same function to define a Geometry by extrusion, enabling to give the domain
name to the extruded geometry and to its sides. Sides numbering is as follows : first, the geometry used as
section of the extrusion, second, the other section, and next the lateral surfaces generated by the extrusion.

Geometry extrude (const Geometry& g , const Transformation& t , Number layers) ;
Geometry extrude (const Geometry& g , const Transformation& t , Number layers , String domName) ;
Geometry extrude (const Geometry& g , const Transformation& t , Number layers , Strings sidenames) ;
Geometry extrude (const Geometry& g , const Transformation& t , Number layers , String domName,

Strings sidenames) ;

The Geometry given to the extrude function can be:

• a canonical one (1D or 2D). Here, a CircArc:

Point b (1 . 5 , − 4 . , 0 .) ;
Point c (2 . , − 3 . 5 , 0 .) ;
CircArc g (_center=Point (1 . 5 , − 3 . 5 , 0 .) , _v1=b , _v2=c , _nnodes=5 , _domain_name="BC") ;
Geometry e2d=extrude (g , Translation (0 . , 0 . , 4 .) , 5 , "Omega") ;

119

Figure 6.10: Extrusion of a circular arc by translation, with 5 layers

• A loop geometry (1D or 2D). Here, a rounded rectangle defines as in Figure 6.34:

Point a (− 1 . 5 , − 4 . , 0 .) ; Point b (1 . 5 , − 4 . , 0 .) ; Point c (2 . , − 3 . 5 , 0 .) ; Point d (2 . , 3 . 5 , 0 .) ;
Point e (1 . 5 , 4 . , 0 .) ; Point f (− 1 . 5 , 4 . , 0 .) ; Point g (− 2 . , 3 . 5 , 0 .) ; Point h(− 2 . , − 3 . 5 , 0 .) ;
Segment s1 (_v1=a , _v2=b , _nnodes=21 , _domain_name="AB") ;
CircArc c1 (_center=Point (3 . 5 , 0 . 5 , 0 .) , _v1=b , _v2=c , _nnodes=5 , _domain_name="BC") ;
Segment s2 (_v1=c , _v2=d , _nnodes=11 , _domain_name="CD") ;
CircArc c2 (_center=Point (3 . 5 , 1 . 5 , 0 .) , _v1=d , _v2=e , _nnodes=5 , _domain_name="DE") ;
Segment s3 (_v1=e , _v2=f , _nnodes=21 , _domain_name="EF") ;
CircArc c3 (_center=Point (0 . 5 , 1 . 5 , 0 .) , _v1=f , _v2=g , _nnodes=5 , _domain_name="FG") ;
Segment s4 (_v1=g , _v2=h , _nnodes=11 , _domain_name="GH") ;
CircArc c4 (_center=Point (0 . 5 , 0 . 5 , 0 .) , _v1=h , _v2=a , _nnodes=5 , _domain_name="HA") ;
Geometry g=planeSurfaceFrom (s1+c1+s2+c2+s3+c3+s4+c4 , "Omega") ;
Geometry e3d=extrude (g , Translation (0 . , 0 . , 4 .) , 10 , "Omega") ;

Figure 6.11: Extrusion of a rounded rectangle (loop geometry) by a rotation, with 10 layers

• Every composite geometry composed exclusively of a geometry and its holes (1D or 2D). That is to say
only operator- or operator-= is used to define the geometry:

E l l i p s e e1 (_center=Point (0 . , 0 . , 0 .) , _v1=Point (4 , 0 . , 0 .) , _v2=Point (0 . , 5 . , 0 .) , _nnodes=12 ,
_domain_name="Omega1" , _side_names=Strings ("Gamma_1" , "Gamma_2" , "Gamma_3" , "Gamma_4")) ;

E l l i p s e e2 (_center=Point (1 . , 2 . , 0 .) , _v1=Point (1 . 5 , 2 . , 0 .) , _v2=Point (1 . , 3 . , 0 .) , _nnodes=12 ,
_domain_name="Omega3" , _side_names=Strings ("Gamma_9" , "Gamma_10" , "Gamma_11" , "Gamma_12")) ;

Geometry e3d2=extrude (e1−e2 , Rotation3d (Point (5 . , 0 . , 0 .) , 0 . , 5 . , 0 . , pi_ / 2 .) , 10 , "Omega" ,
"Gamma") ;

120

Figure 6.12: Extrusion of an ellipse with an elliptic hole by rotation, with 10 layers

6.3.2 How to define names of lateral domains of an extrusion ?

Instead of giving the same name to every lateral surface of an extrusion, you can give a name for each of them,
but what about sides numbering ?
First example, let’s take the extrusion of a CircArc:

Point b (1 . 5 , − 4 . , 0 .) ;
Point c (2 . , − 3 . 5 , 0 .) ;
CircArc g (_center=Point (1 . 5 , − 3 . 5 , 0 .) , _v1=b1 , _v2=c1 , _nnodes=5 , _domain_name="BC") ;
Geometry e2d=extrude (g , Translation (0 . , 0 . , 4 .) , 5 , "Omega" , Strings ("Gamma1" , "Gamma2") ;

In Figure 6.10, point b is the front below left corner and point c is the front top right corner. As g is defined from
b to c, the first lateral side, corresponding to domain Gamma1, will be the edge below. If you had defined g from
c to b, Gamma1 would have correspond to the edge above.
Second example, let’s take the extrusion of an ellipse with an elliptic hole:

E l l i p s e e1 (_center=Point (0 . , 0 . , 0 .) , _v1=Point (4 , 0 . , 0 .) , _v2=Point (0 . , 5 . , 0 .) , _nnodes=12 ,
_domain_name="Omega1") ;

E l l i p s e e2 (_center=Point (1 . , 2 . , 0 .) , _v1=Point (1 . 5 , 2 . , 0 .) , _v2=Point (1 . , 3 . , 0 .) , _nnodes=12 ,
_domain_name="Omega3") ;

Geometry e3d3=extrude (e1−e2 , Rotation3d (Point (5 . , 0 . , 0 .) , 0 . , 5 . , 0 . , pi_ / 2 .) , 10 , "Omega" ,
Strings ("Gamma1" , "Gamma2" , "Gamma3" , "Gamma4" , "Gamma5" , "Gamma6" , "Gamma7" , "Gamma8")) ;

This time lateral surfaces are ordered as follows:

• Lateral surfaces from the outer ellipse are ordered the same way as borders of the ellipse

• Lateral surfaces from the inner ellipse (and every hole in general) are ordered in the reverse order of
borders of the ellipse

Contrary to GMSH, you can extrude a geometry by rotation of angle greater than π, by splitting
extrusion in 2 half extrusions when angle is not 2π or in 4 quarter extrusions when angle is 2π. As a

result, the number of lateral surfaces is multiplicated by 2 or 4.

6.3.3 Example: definition of a conesphere

To define geometries based on cones, you always have to use extrusions. It is the case for the conesphere:

121

Real rb =1. , hc = 3 . ;
Real hs=rb * rb/hc ;
Real rs=sqrt (rb * rb + hs * hs) ;

Point origin (0 . , 0 . , 0 .) , apex (0 . , 0 . , hc) , p1 (rb , 0 . , 0 .) , p2 (0 . , 0 . , − hs−rs) ;

Segment s1 (_v1=p1 , _v2=apex , _hsteps =0.05) ;
Segment s2 (_v1=apex , _v2=origin , _hsteps =0.05) ;
Segment s3 (_v1=origin , _v2=p2 , _hsteps =0.05) ;
CircArc c1 (_center=Point (0 . , 0 . , − cssphereheight) , _v1=p2 , _v2=p1 , _hsteps =0.05) ;
Disk d1 (_center =0.5*p1 , _v1 =0.5*p1+Point (0 . 2 * rb , 0 . , 0 .) , _v2 =0.5*p1+Point (0 . , 0 . , 0 . 2 * rb) ,

_domain_name="Sigma" , _hsteps =0.05) ;

Geometry base=planeSurfaceFrom (s2+s3+c1+s1 , "Gamma") ;
Geometry g=extrude (base , Rotation3d (Point (0 . , 0 . , 0 .) , 0 . , 0 . , 1 . , 2 . * pi_) , "Omega1" ,

Strings ("Gamma1" , "Gamma2" , "Gamma3" , "Gamma4" , "Gamma5" , "Gamma6" , "Gamma7" , "Gamma8")) ;

Figure 6.13: Mesh of a conesphere

6.4 Defining a mesh from a geometry

XLIFE++ owns some constructors that allow to create meshes based on simple geometries in one, two or three
dimensions. The constructors to use are defined as follows:

/ / ! constructor from 1D geometries
Mesh (const Geometry& g , Number order = 1 , MeshGenerator mg = _defaultGenerator ,

const String& name = " ") ;
/ / ! constructor from 2D or 3D geometries

Mesh (const Geometry& g , ShapeType sh , Number order = 1 , MeshGenerator mg = _defaultGenerator ,
const String& name = " ") ;

/ / ! constructor from 2D or 3D geometries with additional options (up to 3)
Mesh (const Geometry& g , ShapeType sh , Number order = 1 , MeshGenerator mg = _defaultGenerator ,

MeshOption o1 , const String& name = " ") ;
Mesh (const Geometry& g , ShapeType sh , Number order = 1 , MeshGenerator mg = _defaultGenerator ,

MeshOption o1 , MeshOption o2 , const String& name = " ") ;
Mesh (const Geometry& g , ShapeType sh , Number order = 1 , MeshGenerator mg = _defaultGenerator ,

MeshOption o1 , MeshOption o2 , MeshOption o3 , const String& name = " ") ;

122

The arguments are:

g is the geometrical object to be meshed (such as Segment, Quadrangle, Hexahedron, . . . , all of them being
declared in the file geometries.hpp),

sh is the shape of the mesh elements (_segment, _triangle, _quadrangle, _tetrahedron, _hexahedron),

order is the interpolation order of the mesh elements ; it depends on the way the mesh is generated (see
below),

mg defines the way the object is computed:

_structured : a structured mesh can be built for canonical geometries only (Segment, Parallelogram,
Rectangle, Square, Parallelepiped, Cuboid and Cube); the order of the mesh is necessarily one,

_subdiv : a unstructured mesh can be built using the so-called subdivision basic algorithm for the
following geometries : Cube, Ball, RevTrunk, RevCone, RevCylinder, Disk and SetOfElems; the
order can be any integer k > 0,

_gmsh : for more complicated geometries, with a nested call of the GMSH software; the order depends on
the chosen shape (refer to GMSH documentation).

oi defines some additional options proposed by some mesh methods (mesh from parametrization and struc-
tured mesh of a parallelogram with triangles) and defined in the following enumeration:

enum MeshOption { _defaultMeshOption =0 , _unstructuredMesh , _structuredMesh ,
_ l e f t S p l i t , _ r i g h t S p l i t , _randomSplit , _ a l t e r n a t e S p l i t }

name defines the mesh name.

Examples:

/ / P1 structured mesh of segment [0 , 1] with 10 nodes . Domain i s Omega
Mesh m1D(Segment(_xmin=0. , _xmax=1. , _nnodes=10 , _domain_name="Omega") , 1 , _structured) ;
/ / P1 unstructured mesh of disk of center (0 , 0 , 1) and radius 2.5 with 40 nodes . Domain i s Omega

and side domain i s Gamma
Mesh m2D(Disk (_center=Point (0 . , 0 . , 1 .) , _radius =2.5 , _nnodes=40 , _domain_name="Omega"

_side_names="Gamma") , _tr iangle , 1 , _subdiv) ;
/ / Q2 unstructured mesh (using gmsh) of cube [0 , 2] x [0 , 1] x [0 , 4] with 20 nodes on x edges , 10 nodes

on y edges and 40 nodes on z edges
Mesh m3D(Cube(_v1=Point (0 . , 0 . , 0 .) , _v2=Point (2 . , 0 . , 0 .) , _v4=Point (0 . , 1 . , 0 .) , _v5=Point (0 . , 0 . , 4 .) ,

_nnodes=Numbers(20 ,10 ,40) , _domain_name="Omega") , _hexahedron , 2 , _gmsh) ;

This is described in more detail in next paragraph.

Moreover, it is possible to subdivide an existing mesh of order 1: a new mesh is created using the subdivision
algorithm mentionned above. The corresponding constructor is defined as follows:

/ / ! constructor from a mesh to be subdivided
Mesh (const Mesh& msh, Number nbsubdiv , Number order = 1) ;

The arguments are:

msh is the input mesh object, i.e. the given mesh to be subdivided ; it should consist of triangles, quadrangles,
tetrahedra or hexahedra ;

nbsubdiv is the number of subdivisions to be performed ;

order is the order of the final mesh ; its default value is 1.

123

Example:

Mesh m1("mesh .msh" , "My Mesh" , msh) ;
Mesh subm1(m1, 2) ;

This builds a mesh subm1 which is obtained by subdividing twice the mesh m1, itself read from the file
“mesh.msh".
Once a mesh is created, it is possible to get information about what it is made of using the function printInfo,
which displays on the terminal general information about the mesh: characteristic data, domains, . . . :

Mesh m1("mesh .msh" , "My Mesh" , msh) ;
m1. printInfo () ;

If you want to mesh a 2D geometry with segment elements, only borders will be meshed. The same
goes for 3D geometries mesh with triangles or quadrangles.

6.4.1 Structured internal meshing tools: structured generator

When the structured mesh generator is chosen (mg = _structured), one can create a mesh of order 1:

• of a segment,

• of a parallelogram with triangles or quadrangles,

• of a parallelepiped with hexahedra, prisms or pyramids.

One has to declare an object of type Geometry, more precisely of one of its derived type Segment, Parallelogram,
Rectangle, Square, Parallelepiped, Cuboid or Cube using one of these constructors, that allow in particular
to specifiy the mesh refinement by setting the number of points (nodes) on each edge, including the two
endpoints.

Example 1:

Strings sn (2) ;
sn [0] = "Sigma_1" ;
Mesh mesh1dP1(Segment(_xmin=0 , _xmax=1 , _nnodes=11 , _side_names=sn) , 1 , _structured , "P1 mesh of

[0 , 1] , step =0.1 ") ;

This builds a mesh of the interval [0,1] with 10 subintervals. The boundary domain Sigma_1, corresponding to
the lower bound 0 of the interval, will be created ; the other one will not be created since it has no name. The
second argument is the mesh order ; in the case of a structured mesh, the only possible value is 1.

It can be noticed that the segment may have been defined by two points in the plane or in the space as well.

Example 2:

Strings sn (4) ;
sn [0] = "Gamma_1" ; sn [2] = "Gamma_2" ;
Mesh mesh2dP1(Rectangle (_xmin=0 , _xmax=1 , _ymin=1 , _ymax=3 , _nnodes=Numbers(3 , 5) ,

_side_names=sn) , _tr iangle , 1 , _structured , "P1 mesh of [0 , 1] x [1 , 3] ") ;

124

This builds a mesh of the rectangle [0,1]×[1,3] with triangles. The interval [0,1] is subdivided into 2 subintervals;
the interval [1,3] is subdivided into 4 subintervals. Only the two domains Gamma_1 and Gamma_2 will be
created. For a rectangle [a,b]× [c,d], the correspondence of the sidenames is the following:

sideNames[0] is [a,b]× c, sideNames[1] is b × [c,d],
sideNames[2] is [a,b]×d , sideNames[3] is a × [c,d].

Some options may be used to control the splitting of elementary rectangle int triangles :

Rectangle R(_xmin=0 ,_xmax=1 ,_ymin=1 ,_ymax=3 , _nnodes=Numbers(6 , 10)) ;
Mesh mesh2dP1l (R, _tr iangle , 1 , _structured) ; / / default i s _ l e f t S p l i t
Mesh mesh2dP1r (R, _tr iangle , 1 , _structured , _ r i g h t S p l i t) ;
Mesh mesh2dP1a(R, _tr iangle , 1 , _structured , _ a l t e r n a t e S p l i t) ;
Mesh mesh2dP1s(R, _tr iangle , 1 , _structured , _randomSplit) ;

Figure 6.14: left, right, alternate and random split of a P1 mesh of a rectangle

Example 3:

Strings sn (4) ;
sn [0] = "Sigma_1" ; sn [1] = "Sigma_2" ;
Mesh mesh2dQ1(Rectangle (_xmin=1 , _xmax=2 , _ymin=1 , _ymax=3 , _nnodes=Numbers(3 , 5) ,

_side_names=sn) , _quadrangle , 1 , _structured , "Q1 mesh of [1 , 2] x [1 , 3] ") ;

This builds a mesh of the rectangle [1,2]× [1,3] with quadrangles. Only the two domains Sigma_1 and Sigma_2
will be created. See example 2 for other commentaries.

Example 4:

Strings sn ("z=1" , "z=5" , "y=1" , "y=3" , "x=0" , "x=1") ;
Mesh mesh3dQ1(Cuboid (_xmin=0 , _xmax=1 , _ymin=1 , _ymax=3 , _zmin=1 , _zmax=5 , _nnodes=Numbers(3 , 5 ,

9) , _side_names=sn) , _hexahedron , 1 , _structured , "Q1 mesh of [0 , 1] x [1 , 3] x [1 , 5] ") ;

This builds a mesh of the parallelepiped [0,1]× [1,3]× [1,5] with hexahedra. The interval [0,1] is subdivided
into 2 subintervals ; the interval [1,3] is subdivided into 4 subintervals ; the interval [1,5] is subdivided into 8
subintervals. The 6 boundary domains will be created with their corresponding names. For a parallelepiped
[a,b]× [c,d]× [e, f], the correspondence of the sidenames is the following:

125

sideNames[0] is [a,b]× [c,d]×e, sideNames[1] is [a,b]× [c,d]× f ,
sideNames[2] is [a,b]× c × [e, f], sideNames[3] is [a,b]×d × [e, f],
sideNames[4] is a × [c,d]× [e, f], sideNames[5] is b × [c,d]× [e, f].

6.4.2 Unstructured internal meshing tools: subdivision generator

When the subdivision algorithm is chosen (mg = _subdiv), one can create a mesh of any order based on the
following volumetric geometries:

• the sphere meshed by tetrahedra,

• the cube meshed by tetrahedra or hexahedra,

• the cone or truncated cone, which may be a cylinder, meshed by tetrahedra or hexahedra.

The following surface geometries are also handled:

• the boundary of the sphere meshed by triangles,

• the boundary of the cube meshed by quadrangles,

• the boundary of the cone or truncated cone meshed by triangles or quadrangles,

• the disk meshed by triangles or quadrangles,

• mesh built from an initial set of triangles or quadrangles in 2D or 3D.

The principle is to start from an initial mesh, a kind of “seed" mesh, consisting of a set of elements, and build the
mesh by subdividing each of them by cutting each edge in the middle until a prescribed so-called “subdivision
level" is reached. A subdivision level equal to 0 gives a mesh reduced to the initial mesh. A triangle and a
quadrangle is subdivided into 4 pieces ; a tetrahedron and a hexahedron is subdivided into 8 pieces. Thus, at
each subdivision, the number of elements of the mesh is multiplied by 4 for a surface mesh, by 8 for a volumetric
one, and the characteristic dimension of the elements is halved.
One has to declare an object of type Geometry, more precisely of type Sphere, Ball,Cube, RevTrunk, RevCone,
RevCylinder, Disk or SetOfElems using one of the available constructors, e.g.:

SetOfElems (const std : : vector <Point>& pts , const std : : vector <std : : vector <number_t> >& elems , const
std : : vector <std : : vector <number_t> >& bounds , const ShapeType esh , const number_t nbsubdiv=1) ;

Mesh of a ball (or sphere) with tetrahedra

The seed of the mesh consists of a unique tetrahedron inside each octant of the cartesian axes. We can choose
the number of octants to be taken into account, from 1 to 8, to mesh different portions of the sphere. The figure
6.15 shows this in the case of a subdivision level equal to 2. Each figure corresponds to the result of the following
code, using the unit sphere and nboct ant s varying from 1 to 8:

order = 1 , nbpts =5 , meshType = 1 ;
Ball sph (_center=Point (0 . , 0 . , 0 .) , _radius =1. , _nboctants=nboctants , _nnodes=nbpts ,

_type=meshType) ;
Mesh m(sph , _tetrahedron , order , _subdiv) ;

The class Sphere could have been used instead of Ball, leading to the same result.

126

Each color corresponds to a different boundary domain. The default value of the argument meshType is 1;
setting it to 0 leads to a so-called flat mesh, where the points created during the algorithm are not projected
onto the sphere, thus keeping the shape of the initial mesh. We can see the effect of this choice on figure 6.16.

1•

2•

3•

4•

1

1•

2•

3•

4•

1

1•

2•

3•

4•

1

1•

2•

3•

4•

1

1•

2•

3•

4•

1

1•

2•

3•

4•

1

1•

2•

3•

4•

1

1•

2•

3•

1

Figure 6.15: Volumic meshes of the different portions of the ball according to the number of octants.

1•

2•

3•

4•

1

1•

2•

3•

4•

1

1•

2•

3•

4•

1

1•

2•

3•

4•

1

1•

2•

3•

4•

1

1•

2•

3•

4•

1

1•

2•

3•

4•

1

1•

2•

3•

1

Figure 6.16: Volumic meshes of the different portions of the “flat ball" according to the number of octants.

If we specifically want the mesh inside the whole sphere, it can be usefull to start from an icosahedron because
of its geometric properties, which lead to a more isotropic mesh than the one based on the 8 octants of the
space. On the other hand, there will be no interface planes defined.
In order to activate this option, the argument nboctants should simply be set to 0. The following code gives the
figure 6.17, which shows both the round and flat results of the algorithm:

127

nboctants = 0 , nbpts =5; meshType = 1 ;
Ball sph (_center=Point (0 . , 0 . , 0 .) , _radius =1. , _nboctants=nboctants , _nnodes=nbpts ,

_type=meshType) ;
order = 1 ;
Mesh m(sph , _tetrahedron , order , _subdiv) ;

meshType = 0 ;
Ball sph2 (_center=Point (0 . , 0 . , 0 .) , _radius =1. , _nboctants=nboctants , _nnodes=nbpts ,

_type=meshType) ;
Mesh m2(sph2 , _tetrahedron , order , _subdiv) ;

1 1

Figure 6.17: Volumic meshes starting from an icosahedron.

Mesh of a cube with tetrahedra or hexahedra

The selection of the octants is also used in the case of the cube as shown on the figure 6.18, which is the result of
the following code, with no subdivision and nboct ant s varying from 1 to 8:

order = 1 , nbpts =2;
Cube cube (_center=Point (0 . , 0 . , 0 .) , _length =2. , _nboctants=nboctants , _nnodes=nbpts) ;
Mesh m(cube , _hexahedron , order , _subdiv) ;

Notice that the edge length of the total cube is 2, so that the cube in the first octant is the so-called unit cube.
Apart the choice of the mesh element (tetrahedron or hexahedron), the main interest of this case is the easy
creation of a L-shape domain (3 octants) and the Fichera corner (7 octants), classical benchmark problem in
the analysis of corner and edge singularities. It is shown on figure 6.18 in an unsual position; in order to put the
missing cube in the first octant, one must apply a rotation, which is done by the following code:

order = 1 , nboctants =7 , nbpts =2;
Cube cube (_center=Point (0 . , 0 . , 0 .) , _length =2. , _nboctants=nboctants , _nnodes=nbpts) ;

cube . rotate3d (Point (0 . , 0 . , 0 .) , 1 . , 0 . , 0 . , pi) ;
Mesh m(cube , _hexahedron , order , _subdiv) ;

The two additional arguments define the rotation of angle 180 degrees around the first axis (X-axis); the result is
shown on figure 6.18, at the last position (bottom right). If necessary, one can specify one or two more rotations
in the form (angle, naxis). The angle is to be given in degrees and naxis defines the rotation axis: it is the number
of the absolute axis, thus 1, 2 or 3.

128

1•
2•

3•4•

5•
6•

7•8•

1

1•
2•

3•4•

5•
6•

7•8•

1

1•
2•

3•4•

5•
6•

7•8•

1

1•
2•

3•4•

5•
6•

7•8•

1

1•
2•

3•4•

5•
6•

7•8•

1

1•
2•

3•4•

5•
6•

7•8•

1

1•
2•

3•4•

5•
6•

7•8•

1

1•
2•

3•

5•
6•

7•8•

1

1•2•

3•
4•

5•6•

7•
8•

1

Figure 6.18: Volumic meshes of the different portions of the cube according to the number of octants.

Mesh of a cylinder with tetrahedra or hexahedra

The subdivision algorithm can handle the case of a cylinder of revolution, whose axis is defined by two points
P1 and P2, and delimited by the two planes containing the two points and orthogonal to the axis. As an example,
we consider the “unit" cylinder of radius 1 and height 1. The following code produces the first two meshes
shown on figure 6.19:

radius = 1 . ;
nbpts =3;
Point P1 (0 . , 0 . , 0 .) , P2 (0 . , 0 . , 1 .) ;
RevCylinder cyl1 (_center1=P1 , _center2=P2 , _radius=radius , _nnodes=nbpts) ;
order =1;
Mesh mT(cyl , _tetrahedron , order , _subdiv) ;
Mesh mH(cyl , _hexahedron , order , _subdiv) ;

129

1 1

1

Figure 6.19: Volumic meshes of the “unit" cylinder with tetrahedra and hexahedra.

Obviously, this is a poor approximation of the cylinder. To get a more accurate description, the user can then
increase the number of elements (greater value of nbsubdiv) or increase the approximation order (or both).

In the case of a tetrahedron mesh, each end-plane may be covered by a “hat", that is to say a solid whose shape
may be a cone or an ellipsoid. The last drawing of figure 6.19 shows such a configuration, with an ellipsoid on
the side of P1 (keyword _gesEllipsoid) whose apex is at radius/2 from the basis of the cylinder, and a cone on
the side of P2 (keyword _gesCone) whose apex is at radius from the other basis of the cylinder. It is obtained by
the following code:

radius = 1 . ;
nbpts =5;
RevCylinder cyl2e (_center1=Point (0 . , 0 . , 0 .) , _center2=Point (0 . , 0 . , 1 .) , _radius=radius ,

_end1_shape=_gesEll ipsoid , _end1_distance=radius /2 , _end2_shape=_gesCone ,
_end2_distance=radius , _nnodes=nbpts) ;

order =1;
Mesh P1VolMeshTetCylE (cyl2e , _tetrahedron , order , _subdiv) ;

Two other keywords exist: _gesNone and _gesFlat. They have an equivalent meaning in the case of a solid body.
They are the default value and indicate that no “hat" should be added at the corresponding end.

Mesh of a cone or a truncated cone with tetrahedra or hexahedra

A truncated cone of revolution is defined by an axis, given by two points P1 and P2, delimited by the two planes
containing the two points and orthogonal to the axis. The two circular sections are defined by two radii. The
following code produces the first two meshes shown on figure 6.20:

nbpts =5;
radius1 =0. , radius2 = 1 . ;
Point P1 (− 1 . , − 1 . , 0 .) , P2 (0 . , 0 . , 2 .) ;
RevCone cone (_center=P2 , _radius=radius2 , _apex=P1 , _nnodes=nbpts) ;
order =1;
Mesh mT(cone , _tetrahedron , order , _subdiv) ;

radius1 = 0 . 5 ;
RevTrunk cone2 (_center1=P1 , _radius1=radius1 , _center2=P2 , _radius2=radius2 , _nnodes=nbpts) ;
Mesh mH(cone2 , _hexahedron , order , _subdiv) ;

The number of slices is 0, which means that a suitable default value is automatically computed from the length
of the axis and the radii. The first object is a "true" cone since one radius is 0 ; it can be meshed exactly with
tetrahedra. Using hexahedra for this geometry is not advised since the elements will be degenerated at the apex
of the cone. Moreover, the radius cannot be 0, it should be at least 1.e-15, leading to a "near true" cone, but

130

with highly degenerated hexahedra close to the apex. Hexahedra are more suitable to build a trucated cone ; an
example is shown on the middle drawing of the figure 6.20.

1

1

1

Figure 6.20: Volumic meshes of the cone and truncated cone with tetrahedra and hexahedra.

The following code produces the last mesh shown on figure 6.20:

nbpts =5;
radius1 =0.6 , radius2 = 1 . ;
RevTrunk cone1 (_center1=Point (− 1 . , − 1 . , 0 .) , _radius1=radius1 , _center2=Point (0 . , 0 . , 2 .) ,

_radius2=radius2 , _end1_shape=_gesCone , _end1_distance =1.5 , _end2_Shape=_gesEll ipsoid ,
_end2_distance =0.7 , _nnodes=nbpts) ;

order =1;
Mesh mTE(cone1 , _tetrahedron , order , _subdiv) ;

In the same way as for the cylinder, the truncated cone can be “covered" with a solid. This is only available for a
mesh made of tetrahedra. We show a cone and an ellipsoid put at each end of a truncated cone, respectively on
the side of P1 and on the side of P2.

Mesh of a sphere with triangles

The same logic described previously for a mesh of tetrahedra apply here for a mesh of triangles. The following
code leads to meshes of the boundary of the unit sphere, and the result is shown on figure 6.21:

order = 1 , nbpts =5;
Ball sph (_center=Point (0 . , 0 . , 0 .) , _radius =1. , _nboctants=nboctants , _nnodes=nbpts) ;
Mesh m(sph , _tr iangle , order , _subdiv) ;

131

1•

2•

3•

1

1•

2•

3•

1

1•

2•

3•

1

1•

2•

3•

1

1•

2•

3•

1

1•

2•

3•

1

1•

2•

3•

1

1•

2•

3•

1

Figure 6.21: Surfacic meshes of the different portions of the boundary of the sphere according to the number of
octants.

Again, if the argument meshType is set to 0, we get the “flat" version of the meshes, i.e. the meshes obtained
from the subdivision of the nboctants initial triangles (see figure 6.22).

1 1 1 1

1 1 1 1

Figure 6.22: Surfacic meshes of the different portions of the “flat sphere" according to the number of octants.

If we specifically want the mesh of the whole sphere, it can be usefull to start from an icosahedron because of
its geometric properties, which lead to a more isotropic mesh than the one based on the 8 octants of the space.
On the other hand, there will be no interface planes defined.
In order to activate this option, the argument nboctants should simply be set to 0. The following code gives the
figure 6.23, which shows both the round and flat results of the algorithm:

nboctants = 0 , nbpts =5; meshType = 1 ;
Ball sph (_center=Point (0 . , 0 . , 0 .) , _radius =1. , _nboctants=nboctants , _nnodes=nbpts ,

_type=meshType) ;

132

order = 1 ;
Mesh m(sph , _tr iangle , order , _subdiv) ;

meshType = 0 ;
Ball sph2 (_center=Point (0 . , 0 . , 0 .) , _radius =1. , _nboctants=nboctants , _nnodes=nbpts ,

_type=meshType) ;
Mesh m2(sph2 , _tr iangle , order , _subdiv) ;

1 1

Figure 6.23: Surfacic meshes starting from an icosahedron.

Mesh of a cube with quadrangles

We can obtain the mesh of the surface of a cube, or part of it, with quadrangles, by using the same logic described
just above for the sphere. Consider the following code:

order = 1 , nbpts =2;
Cube cube (_center=Point (0 . , 0 . , 0 .) , _length =2. , _nboctants=nboctants , _nnodes=nbpts) ;
Mesh m(cube , _quadrangle , order , _subdiv) ;

Letting nboctants vary from 1 to 8, then 0, lead to the objects shown on figure 6.24 below.

133

1

1 1
1

1 1 1
1

1

Figure 6.24: Surfacic meshes of the different portions of the cube according to the number of octants.

The last object (nboctants = 0) is the simplest mesh of a cube made of 6 quadrangles (squares here). By
subdividing it once, we get the previous yellow object (nboctants = 8) made of 24 quadrangles.

Mesh of a cone or a truncated cone with triangles

We can build a mesh of the surface of a truncated cone with triangles. The following code produces the first two
drawings of the figure 6.25:

radius = 1 . ;
nbsl ices =1 , nbpts =3;
Point P1 (0 . , 0 . , 0 .) , P2 (0 . , 0 . , 1 .) ;
RevCylinder cyl1 (_center1=P1 , _center2=P2 , _radius=radius , _nnodes=nbpts) ;
order =1;
Mesh mT(cyl , _tr iangle , order , _subdiv , fname) ;

nbpts =5;
RevCylinder cylE (_center1=P1 , _center2=P2 , _radius=radius , _end1_shape=_gesFlat ,

_end1_distance =0. , _end2_shape=_gesNone , _end2_distance =0. , _nnodes=nbpts) ;
Mesh mTE(cylE , _tr iangle , order , _subdiv) ;

134

1 1

Figure 6.25: Surfacic meshes of a cylinder.

nbpts =5;
radius1 =0.5 , radius2 = 1 . ;
Point P1 (− 1 . , − 1 . , 0 .) , P2 (0 . , 0 . , 2 .) ;
RevTrunk cone3 (_center1=P1 , _radius1=radius1 , _center2=P2 , _radius2=radius2 ,

_end1_shape=_gesNone , _end1_distance =0. , _end2_shape=_gesFlat , _end2_distance =0. ,
_nnodes=nbpts) ;

order =1;
Mesh mT(cone3 , _tr iangle , order , _subdiv) ;

RevTrunk cone1 (_center1=P1 , _radius1=radius1 , _center2=P2 , _radius2=radius2 ,
_end1_shape=_gesCone , _end1_distance =1.5 , _end2_shape=_gesEll ipsoid , _end2_distance =0.7 ,
_nnodes=nbpts) ;

Mesh mTE(cone1 , _tr iangle , order , _subdiv) ;

1

1

Figure 6.26: Surfacic meshes of a truncated cone.

Mesh of a cone or a truncated cone with quadrangles

We can build a mesh of the surface of a truncated cone with quadrangles. The following code produces the first
two drawings of the figure 6.27:

nbpts =5;
radius1 =0.5 , radius2 = 1 . ;
Point P1 (− 1 . , − 1 . , 0 .) , P2 (0 . , 0 . , 2 .) ;
RevTrunk cone2 (_center1=P1 , _radius1=radius1 , _center2=P2 , _radius2=radius2 , _nnodes=nbpts) ;
order =1;
Mesh mQ(cone2 , _quadrangle , order , _subdiv) ;

135

RevTrunk cone3 (_center1=P1 , _radius1=radius1 , _center2=P2 , _radius2=radius2 ,
_end1_shape=_gesNone , _end1_distance =0. , _end2_shape=_gesFlat , _end2_distance =0. ,
_nnodes=nbpts) ;

Mesh mQF(cone3 , _quadrangle , order , _subdiv , "mQF") ;
mQF. printInfo () ;

The left truncated cone is opened at both ends (this is the default) ; thus it has two boundaries shown in green
(bottom) and orange (top). The object cone2 is the same as the one used previously to make the mesh of
hexahedra (see figure 6.20).
The second drawing shows the same object bearing a "lid" on its top (on the side of P2). Indeed, such a truncated
cone may be closed at one or both ends by a plane "lid". This is obtained by specifying the geometric end
shape to be used at each end: _gesNone means that the cone is left opened, which is the default behaviour, and
_gesFlat means that a plane "lid" is requested. The objet proposed in this example has thus one boundary at its
other end (on the side of P1), shown as an orange line.
In both cases, the requested number of slices is 0 ; thus, the algorithm decided to create two slices displayed in
magenta and yellow. The result of the instruction mQF.printInfo(); is the following:

Mesh'mQF' (cone − Quadrangle mesh)
space dimension : 3 , element dimension : 2
Geometry of shape type revolution volume based on cone of dimension 3 ,
BoundingBox [−1.45412 ,0.908248] x [−1.45412 ,0.908248] x [−0.288675 ,2.57735] , names of variable : x ,

y , z
number of elements : 208 , number of v e r t i c e s : 217 , number of nodes : 217 , number of domains : 5

domain number 0 : Omega (whole domain)
domain number 1 : Sigma_1 (End subdomain on the side of end point 2)
domain number 2 : Sigma_2 (S l i c e 1)
domain number 3 : Sigma_3 (S l i c e 2)
domain number 4 : Kappa_1 (Boundary : End curve on the side of end point 1)

1 1

1

Figure 6.27: Surfacic meshes of a cone and a cylinder.

The last drawing shows the surfacic mesh of a cylinder, since it is a particular kind of cone. The cylinder is the
same as the one shown on figure 6.19. The code that produces this mesh is:

radius = 1 . ;
nbpts =3;
Point P1 (0 . , 0 . , 0 .) , P2 (0 . , 0 . , 1 .) ;
RevCylinder cyl (_center1=P1 , _center2=P2 , _radius=radius , _nnodes=nbpts) ;
order =1;
Mesh mQCyl(cyl , _quadrangle , order , _subdiv) ;

The cylinder is opened at both ends and thus has two boundaries shown as a green line and an orange line.

136

Mesh of a disk or a part of a disk

We can build the mesh of a disk or a portion of a disk, with triangles or quadrangles. Using the following code,
we get the result shown on figure 6.28.

radius = 2 . ;
nbpts =5 , order =1;
Disk pdisk (_center=Point (0 . , 1 .) , _radius=radius , _angle1 =10. , _angle2 =300. , _nnodes=nbpts) ;
Mesh meshTriDisk (pdisk , _tr iangle , order , _subdiv) ;
Mesh meshQuaDisk(pdisk , _quadrangle , order , _subdiv) ;

1 1

Figure 6.28: Meshes of a portion of disk with triangles and quadrangles.

Mesh from a set of triangles or quadrangles

This possibility is designed to build a mesh starting from an elementary set of elements. Generally, this initial
mesh is build “manually". This gives a flexible mean to create a mesh which cannot be obtained with another
constructor, but without having to resort to the help of a more complicated solution (like an external mesh
generator in particular).
Such meshes can be made in 2D or in 3D with triangles or quadrangles. Figure 6.29 shows two examples, in 3D
with triangles, in 2D with quadrangles on a domain with a hole.

1

1

Figure 6.29: Meshes from initial set of triangles and quadrangles.

The program that produces it looks like the following:

order = 1 , nbsubdiv = 1 ;
SetOfElems sot (tpts , telems , tbounds , _tr iangle , nbsubdiv) ;
Mesh mT(sot , _tr iangle , order , _subdiv) ;
SetOfElems soq (qpts , qelems , qbounds , _quadrangle , nbsubdiv) ;
Mesh mQ(soq , _quadrangle , order , _subdiv) ;

137

The mesh of triangle is based on an initial set of 2 triangles {1,2,3} and {1,4,2}, stored in the vector elems.
The 4 points are Point(0.,0.,0.), Point(1.,0.,0.), Point(0.,1.,0.3), Point(0.,-1.,0.3) stored in the vector tpts. Four
boundaries are defined. A boundary is simply defined by the list of point numbers lying on it, in any order.
Thus, here, the four boundaries are {1,4}, {4,2}, {2,3} and {1,3}; they are stored in the vector tbounds. The same
apply for the set of quadrangles.

6.4.3 Meshing tool with nested call to GMSH: gmsh generator

Using the GMSH interface to define meshes allows you to define more canonical geometries than both previous
generators:

• segments, ellipses, circles, elliptic or circular arcs as 1D geometries

• quadrangles, rectangles, squares, disks, elliptical surfaces, spheres, ellipsoids, triangles as 2D geometries
with either triangular or quadrangular mesh elements.

• hexahedron, parallelepipeds, cubes, balls, tetrahedron, cylinders, prisms, pyramids as 3D geometries
with either tetrahedral or hexahedral mesh elements.

When you use it, 2 files will be generated in your directory :

xlifepp_script.geo This is the input file of GMSH. To simplify its write, we developed a macro file includes in
this one. If you look at this file, you will find a very elegant way to define meshes with GMSH.

xlifepp_script.msh This is the real mesh file, generated by a system call to GMSH from the .geo file. This file is
loaded by XLIFE++.

Next to this, you can define 2 types of complicated geometries : the so-called "composite" and "loop" geome-
tries.
If you want to define a geometry that XLIFE++ can not directly handle, you can use GMSH directly.

Examples of composite and loop geometries

Please see subsection 6.1.13 for definition of composite geometries and the use of operators + and -, and see
subsection 6.1.12 for definition of loop geometries and the use of surfaceFrom and volumeFrom routines.
Let’s see a first example of an ellipse inside a rectangle:

Rectangle r (_xmin=−3, _xmax=3 , _ymin=−2, _ymax=2 , _nnodes=Numbers(33 ,22) , _domain_name="Omega") ;
E l l i p s e e (_center=Point (0 , 0) , _xlength =1 , _ylength =0.5 , _nnodes=11) ;
Mesh m1(r −e , _tr iangle , 1 , _gmsh) ;
Mesh m2(r+e , _tr iangle , 1 , _gmsh) ;

138

Figure 6.30: GMSH view of m1 and m2

The following example shows how it works in 3D with a parallelepiped hole inside an ellipsoid:

Ellipsoid ed1 (_center=Point (0 . , 0 . , 0 .) , _v1=Point (3 . , 0 . , 0 .) , _v2=Point (0 . , 2 . , 0 .) ,
_v3=Point (0 . , 0 . , 1 .) , _nnodes=16) ;

Parallelepiped pa1 (_v1=Point (−0.5 , −0.5 , −0.5) , _v2=Point (0 . 5 , −0 . 5 , −0 . 5) , _v4=Point (− 0 . 5 , 0 . 5 , −0 . 5) ,
_v5=Point (− 0 . 5 , − 0 . 5 , 0 . 5) , _nnodes=3) ;

Mesh mesh3dP1Composite (ed1−pa1 , _tetrahedron , 1 , _gmsh) ;

Figure 6.31: GMSH view of a 3d composite geometry (ellipsoid - parallelepiped)

139

Figure 6.32: GMSH view of the hole of a 3d composite geometry (ellipsoid - parallelepiped)

Let’s see now an example with more than 2 components:

Strings sn ("Gamma_1" , "Gamma_2" , "Gamma_3" , "Gamma_4") ;
E l l i p s e e1 (_center=Point (0 . , 0 .) , _v1=Point (4 , 0 .) , _v2=Point (0 . , 5 .) , _nnodes=12 ,

_domain_name="Omega1" , _side_names=sn) ;
sn [0]= "Gamma_5" ; sn [1]= "Gamma_6" ; sn [2]= "Gamma_7" ; sn [3]= "Gamma_8" ;
Rectangle r1 (_xmin= −2. , _xmax=2. , _ymin= −4. , _ymax=4. , _nnodes=11 , _domain_name="Omega2" ,

_side_names=sn) ;
sn [0]= "Gamma_9" ; sn [1]= "Gamma_10" ; sn [2]= "Gamma_11" ; sn [3]= "Gamma_12" ;
E l l i p s e e2 (_center=Point (1 . , 2 .) , _v1=Point (1 . 5 , 2 .) , _v2=Point (1 . , 3 .) , _nnodes=12 , _side_names=sn) ;
sn [0]= "Gamma_13" ; sn [1]= "Gamma_14" ; sn [2]= "Gamma_15" ; sn [3]= "Gamma_16" ;
E l l i p s e e3 (_center=Point (0 . , 0 . , 0 .) , _v1=Point (0 . 5 , 0 . , 0 .) , _v2=Point (0 . , 1 . , 0 .) , _nnodes=12 ,

_side_names=sn) ;
sn [0]= "Gamma_17" ; sn [1]= "Gamma_18" ; sn [2]= "Gamma_19" ; sn [3]= "Gamma_20" ;
Rectangle r2 (_xmin=5. , _xmax=6. , _ymin=0. , _ymax=1. , _nnodes=6 , _domain_name="Omega3" ,

_side_names=sn) ;
sn [0]= "Gamma_21" ; sn [1]= "Gamma_22" ; sn [2]= "Gamma_23" ; sn [3]= "Gamma_24" ;
Disk d1 (_center=Point (5 . 5 , 0 . 5 , 0 .) , _v1=Point (5 . 7 , 0 . 5 , 0 .) , _v2=Point (5 . 5 , 0 . 7 , 0 .) , _nnodes=12 ,

_side_names=sn) ;
Mesh mesh2dP1Composite ((e1+r1) −(e2+e3) +r2 −d1 , _tr iangle , 1 , _gmsh) ;

Figure 6.33: GMSH view of complex 2d composite geometry

Let’s take an example using segments and circle arcs to define a mesh on a rectangle with rounded corners:

Point a (−1.5 , −4.) ; Point b (1 . 5 , − 4 .) ; Point c (2 . , − 3 . 5) ; Point d (2 . , 3 . 5) ;

140

Point e (1 . 5 , 4 .) ; Point f (− 1 . 5 , 4 .) ; Point g (− 2 . , 3 . 5) ; Point h(−2. , −3.5) ;
Segment s1 (_v1=a , _v2=b , _nnodes=21 , _domain_name="AB") ;
CircArc c1 (_center=Point (3 . 5 , 0 . 5) , _v1=b , _v2=c , _nnodes=5 , _domain_name="BC") ;
Segment s2 (_v1=c , _v2=d , _nnodes=11 , _domain_name="CD") ;
CircArc c2 (_center=Point (3 . 5 , 1 . 5) , _v1=d , _v2=e , _nnodes=5 , _domain_name="DE") ;
Segment s3 (_v1=e , _v2=f , _nnodes=21 , _domain_name="EF") ;
CircArc c3 (_center=Point (0 . 5 , 1 . 5) , _v1=f , _v2=g , _nnodes=5 , _domain_name="FG") ;
Segment s4 (_v1=g , _v2=h , _nnodes=11 , _domain_name="GH") ;
CircArc c4 (_center=Point (0 . 5 , 0 . 5) , _v1=h , _v2=a , _nnodes=5 , _domain_name="HA") ;
Mesh mesh2dP1Loop(planeSurfaceFrom (s1+c1+s2+c2+s3+c3+s4+c4) , _tr iangle , 1 , _gmsh) ;

Figure 6.34: GMSH view of rectangular geometry with rounded corners, defined with the surfaceFrom routine

You can define composite geometries using loop geometries. Let’s take the complex 2d composite example in
which we will replace the first rectangle by a rounded rectangle and the disk by a half disk, both defined by the
surfaceFrom routine:

E l l i p s e e1 (_center=Point (0 . , 0 .) , _v1=Point (4 , 0 .) , _v2=Point (0 . , 5 .) , _nnodes=12 ,
_domain_name="Omega1") ;

Point a (−1.5 , −4.) ; Point b (1 . 5 , − 4 .) ; Point c (2 . , − 3 . 5) ; Point d (2 . , 3 . 5) ;
Point e (1 . 5 , 4 .) ; Point f (− 1 . 5 , 4 .) ; Point g (− 2 . , 3 . 5) ; Point h(−2. , −3.5) ;
Segment s1 (_v1=a , _v2=b , _nnodes=21 , _domain_name="AB") ;
CircArc c1 (_center=Point (3 . 5 , 0 . 5) , _v1=b , _v2=c , _nnodes=5 , _domain_name="BC") ;
Segment s2 (_v1=c , _v2=d , _nnodes=11 , _domain_name="CD") ;
CircArc c2 (_center=Point (3 . 5 , 1 . 5) , _v1=d , _v2=e , _nnodes=5 , _domain_name="DE") ;
Segment s3 (_v1=e , _v2=f , _nnodes=21 , _domain_name="EF") ;
CircArc c3 (_center=Point (0 . 5 , 1 . 5) , _v1=f , _v2=g , _nnodes=5 , _domain_name="FG") ;
Segment s4 (_v1=g , _v2=h , _nnodes=11 , _domain_name="GH") ;
CircArc c4 (_center=Point (0 . 5 , 0 . 5) , _v1=h , _v2=a , _nnodes=5 , _domain_name="HA") ;
Geometry sf1 =(surfaceFrom (s1+c1+s2+c2+s3+c3+s4+c4 , "Omega2") ;
E l l i p s e e2 (_center=Point (1 . , 2 .) , _v1=Point (1 . 5 , 2 .) , _v2=Point (1 . , 3 .) , _nnodes=12 ,

_domain_name="Omega3") ;
E l l i p s e e3 (_center=Point (0 . , 0 .) , _v1=Point (0 . 5 , 0 .) , _v2=Point (0 . , 1 .) , _nnodes=12 ,

_domain_name="Omega4") ;
Rectangle r2 (_xmin=5. , _xmax=6. , _ymin=0. , _ymax=1. , _nnodes=6 , _domain_name="Omega5") ;
Segment s5 (_v1=Point (5 . 3 , 0 . 5) , _v2=Point (5 . 7 , 0 . 5) , _nnodes=5) ;
CircArc c5 (_center=Point (5 . 5 , 0 . 5) , _v1=Point (5 . 7 , 0 . 5) , _v2=Point (5 . 5 , 0 . 7) , _nnodes=5) ;
CircArc c6 (_center=Point (5 . 5 , 0 . 5) , _v1=Point (5 . 5 , 0 . 7) , _v2=Point (5 . 3 , 0 . 5) , _nnodes=5) ;
Geometry sf2=planeSurfaceFrom (s5+c5+c6 , "Omega6") ;
Mesh mesh2dP1Composite1 ((e1+sf1) −(e2+e3) +r2 −sf2 , _tr iangle , 1 , _gmsh) ;

141

Figure 6.35: GMSH view of mesh2dP1Composite1

Finally, let’s see now an example of complex composite geometry with use of forcing inclusion. Components
are defines in example above:

Mesh mesh2dP1Composite3 (e1+(sf1 +(+(e2+e3)) +r2+sf2 , _tr iangle , 1 , _gmsh) ;

Figure 6.36: GMSH view of mesh2dP1Composite3

Structured mesh with GMSH generator

GMSH allows to generate structured and unstructured meshes. Even if XLIFE++ offers a structured mesh
generator, it may be useful to have it with the GMSH generator. To do so, you have an additional argument
whose value is structuredMesh:

Mesh m(Rectangle (_xmin=0. , _xmax=2. , _ymin=0. , _ymax=4. , _nnodes=11 ,
_side_names=Strings ("Gamma_1" , "Gamma_2" , "Gamma_3" , "Gamma_4")) , _tr iangle , 1 , _gmsh ,
_structuredMesh) ;

6.5 Open Cascade extension

Open Cascade Technology (OCT) 1 is a third party open source library dedicated to 3D CAD data. It is a powerful
library dealing with canonical geometries but providing complex geometrical operations (union, intersection,

1trademark @Open Cascade, https://www.opencascade.com/

142

difference of geometries, fillet, chamfer,...). The standard geometry engine of XLIFE++ provides only union or
difference in the case of one geometry included in an other one (if detection is easy). So to go further, XLIFE++
provides an interface to OCT. Obviously, OCT must be installed and activated in XLIFE++ (cmake option).

OCT interface is still experimental. Use it with cautious!

When OCT is enabled, it runs only if the user invokes an explicit OCT function. OCT objects (OCData class) are
embedded in XLIFE++ geometry objects but are not allocated by default. If an OCT function is invoked, OCT
object will be allocated on the fly.

The main interest of OCT interface is to mesh complex object, for instance the intersection of two spheres
perforated by a cylinder:

Sphere S1 (_center=Point (1 . , 0 , 0 .) , _radius =1 , _hsteps =0.02 ,_domain_name="S" , _side_names="Sigma") ;
Sphere S2=translate (S1 , 1 . 5 , 0 . , 0 .) ; / / _side_names "Sigma_2"
RevCylinder C(_center1=Point (1 , 0 . , 0) , _center2=Point (2 . 5 , 0 . , 0 .) , _radius =0.3 , _hsteps =0.02 ,

_domain_name="C" , _side_names="Gamma") ;
Geometry G=(S1^S2) −C; / / i n t e r s e c t i o n of spheres minus cyl inder

At this stage, the geometry G handles only a symbolic description and does not handle any OCT object. It can
be not dealt with usual mesh tools of XLIFE++ addressing only the standard gmsh engine. Now invoking the
Mesh constructor with the mesh generator option _gmshOC will produce the creation of OCT objects related
to geometries involved (here spheres and cylinder) and an OCT object related to the geometry G that will be
exported to GMSH in a particular way.

Mesh M(G, _tr iangle , 1 ,_gmshOC) ;

In this example, the name of domains created by Mesh are quite natural : "Sigma" and "Sigma_2" for the sphere
boundaries and "Gamma" for the cylinder boundary. But in some more complex cases, it can be no so intuitive
to recover domain names, especially when new faces are created. There is a quite simple way to recover them.
Indeed, when meshing with _gmshOC generator, 3 files are created in the folder containing the executable file:

• xlifepp.brep containing the brep export of the OCT object

• xlifepp.geo, a gmsh script file containing the command to load the brep file and some additional com-
mands related to mesh discretization and domain names.

• xlifepp.msh, the mesh file created by GMSH and loaded by XLIFE++ to create the Mesh object.

143

Loading the xlifepp.geo in GMSH and configuring it to see curve/surface labels will allows you to identify easier
domain names.

The next example shows how powerful is OCT and how XLIFE++ can manage complex geometries:

Cone co (_center1=Point (0 . , 0 . , 0 .) , _v1=Point (1 . , 0 . , 0 .) , _v2=Point (0 . , 1 . , 0 .) , _apex=Point (0 . , 0 . , 1) ,
_hsteps =0.3 , _side_names="gamma") ;

Cylinder cy (_center1=Point (0 . , 0 . , 0 .) , _v1=Point (0 . 7 , 0 . , 0 .) , _v2=Point (0 . , 0 . 7 , 0 .) ,
_center2=Point (0 . , 0 . , 7 .) , _hsteps =1 ,_side_names="gamma") ;

Sphere sp (_center=Point (0 . , 0 . , 7 .) , _radius =1. , _hsteps =0.3 , _side_names="gamma") ;
Geometry ant=cy+co+sp ;
Real R=30. , aR=0.999*R, d= 0 . 2 ;
Sphere spcor (_center=Point (0 . , 0 . , 0 .) , _radius=R, _hsteps =2 ,_side_names="sigma") ;
Geometry cor=toComposite (spcor) ;
for (number_t i =0; i <8; i ++)

for (number_t j =0; j <7; j ++)
{

Real i r = i +d* (2 * std : : rand () * (1 . 0 / RAND_MAX) −1) ,
j r = j +d* (2 * std : : rand () * (1 . 0 / RAND_MAX) −1) ;

Real t =pi_ * (i r /4 −1) , p=pi_ /8*(j r −3) ;
Transformation t f = Translation (Point (aR* cos (t) * cos (p) ,aR* sin (t) * cos (p) ,aR* sin (p)))

* Rotation3d (Point (0 , 0 , 0) , Point (0 , 0 , 1) , t) ;
t f *= Rotation3d (Point (0 , 0 , 0) , Point (0 , 1 , 0) , pi_ /2−p) ;
cor+=transform (ant , t f) ;

}
Mesh M(cor , _tr iangle , 1 ,_gmshOC) ;

144

Available geometrical operations

operation with OC extension standard geometry engine

+ merge geometries (fusion) union of disjoint or included geometries
- difference of geometries (cut) make a hole (included geometries)
^ intersection of geometries (common) not available
% not managed force inclusion

Importing brep files

OCT extension provides a new interesting feature : loading a brep file in a Geometry object and mesh it using
the _gmshOC generator:

Geometry naca ("NACA63−412.brep") ;
naca . setOCName(_solid , 1 , "naca") ;
naca . setOCName(_face , 1 , " extrados ") ; / / extrados face
naca . setOCName(_face , 2 , " intrados ") ; / / intrados face
naca . setOCName(_face , Numbers(3 , 4) , " l a t e r a l ") ; / / l a t e r a l f a c e s
naca . setOCHstep (Numbers(1 , 3) , 0 . 2) ;
naca . setOCHstep (Numbers(2 , 4) , 0 . 1) ;
Mesh(naca , _tetrahedron , 1 ,_gmshOC) ;

In this example, after viewing in GMSH the "NACA63-412.brep" file and identify numbers of elementary objects
(solid, face, point), some particular functions (setOCName, setOCHstep, setOCNnode) allow to control names
and mesh size parameters.

6.6 Extrude a mesh

As an alternative to mesh an extruded geometry, it is possible to extrude a 1D or a 2D mesh using the following
mesh constructor:

Mesh(const Mesh& ms, const Point& O, const Point& D , number_t nbl ,
number_t namingDomain=0 , number_t namingSection=0 , number_t namingSide=0 ,
const s t r i n g _ t& meshName=" ") ;

where O⃗D defines the direction of extrusion and nbl the number of layers of same width (regular extrusion).
More precisely, any point M of the section mesh is extruded using nbl points :

Mk = M +O +k ∗O⃗D .

When a 1D section, extruded mesh is made with quadrangles. When a 2D triangular mesh section, extruded
mesh is made with prisms and when a 2D quadrangular mesh section, extruded mesh is made with hexahedra.

145

The boundary domains created by the extrusion process come from the boundary domains of the original
section. This process is controlled by the 3 parameters namingDomain, namingSection, namingSide taking
one of of the values 0, 1 or 2, with the following rules:

0: domains are not created

1: one extruded domain is created for any domain of the original section

2: for each layer, one extruded domain is created for any domain of the original section

Be cautious, the side domains of extruded domain are created from the side domains of the given section.
Thus, if the given section has no side domains, the extruded domains will have no side domain! The naming
convention is the following:

• Domains and side domains keep their name with the extension "_e" or "_e1", "_e2", ..., "_en"

• Section domains have the name of original domains with the extension "_0",...,"_n"

• When namingDomain=0, the full domain is always created and named "Omega".

The following figure illustrates the naming rules of domains.

Figure 6.37: Mesh extrusion, domains naming

For instance, to mesh a tubular domain using the mesh extrusion of a crown:

Disk dext (_center=Point (0 . , 0 .) , _radius =1. , _nnodes=20 , _domain_name="Omega" ,
_side_names="Sigma") ;

Disk dint (_center=Point (0 . , 0 .) , _radius =0.5 , _nnodes=10 ,_side_names="Gamma") ;
Mesh crown (dext −dint , _tr iangle , 1 , _gmsh) ;
Mesh tube (crown , Point (0 , 0 , 0) , Point (0 , 0 , 1) ,10 ,1 ,1 ,1) ;

146

Figure 6.38: Tube prismatic mesh from extrusion of a crown mesh

6.7 Split mesh element

Sometimes it may be useful to split elements into elements of an other type, for instance to produce mesh of
pyramids that are not provided by standard meshing softwares.To do this, a general constructor is offered:

Mesh(const Mesh& mesh, ShapeType sh , const s t r i n g _ t name=" ") ;

where sh is the desired shape type.
Up to now, only one splitting process is available: hexahedron of order 1 into six pyramids of order 1:

Mesh meshQ1(Cuboid (_xmin=0 , _xmax=1 , _ymin=1 , _ymax=3 , _zmin=1 , _zmax=5 ,
_nnodes=Numbers(3 , 5 , 9) , _side_names=sidenames) , _hexahedron , 1 ,
_structured , "Q1 mesh of [0 , 1] x [1 , 3] x [1 , 5] ") ;

Mesh meshPyramid(meshQ1, _pyramid , "Py1 mesh of [0 , 1] x [1 , 3] x [1 , 5] ") ;

The Mesh object passed to the splitting constructor may be any hexahedral mesh. Note that an hexahedron is
split into the six pyramids based on the hexahedron faces and the centroid of the hexahedron as tip.

6.8 Loading a mesh from a file

XLIFE++ allows you to read various mesh file formats. The constructor to use is defined as follows:

/ / ! constructor from a f i l e
Mesh (const String& filename , const String& meshname, IOFormat mft , Number nodesDim) ;

The arguments are:

filename is the name of the mesh file,

meshname is the name of the mesh, for log purpose, Default value is empty string.

mft defines the mesh format. It can take four values as we can see on the examples hereafter.

nodesDim defines minimal number of coordinates of each vertex. Default is 0 for automatic behavior. Normally,
you should not have to use this argument.

/ / loading a VTK mesh f i l e
Mesh m1("mesh . vtk " , "My Mesh M1" , vtk) ;
/ / loading a VTU mesh f i l e

Mesh m2("mesh . vtu " , "My Mesh M2" , vtu) ;

147

/ / loading a GMSH mesh f i l e
Mesh m3("mesh .msh" , "My Mesh M3" , msh) ;
/ / loading a GMSH s c r i p t f i l e

Mesh m4("mesh . geo" , "My Mesh M4" , geo) ;
/ / loading a MELINA mesh f i l e

Mesh m5("mesh . mel" , "My Mesh M5" , mel) ;
/ / loading a PLY mesh f i l e

Mesh m6("mesh . ply " , "My Mesh M6" , ply) ;

which create six Mesh objects called m1, m2, m3, m4, m5 and m6.

• To have more information about the VTK and VTU file formats, please go to http://www.paraview.org

• The MELINA file format is the input format of the MELINA finite element library, ancestor of XLIFE++.
For more information, please go to http://anum-maths.univ-rennes1.fr/melina/danielmartin/
melina/

• To have more information on the PLY file format, please go to http://paulbourke.net/dataformats/
ply.

• To have more information about GMSH, please go to http://geuz.org/gmsh/. You will have everything
you need about the msh format and about the geo scripts.

If you load a geo file, XLIFE++ will call GMSH to create the corresponding msh file, which is
then read. Consequently, GMSH needs to be installed on your computer and the executable

file, called gmsh, should be found through your PATH environment variable. If GMSH is installed after
XLIFE++, XLIFE++ needs to be reinstalled.

6.9 Transformations on meshes

Geometrical transformations on meshes work as on geometries. Please see section 6.2 for definition and use of
transformations routines.
Then, if you want to apply a transformation and modify the input object, you can use one of the following
functions:

/ / ! apply a geometrical transformation on a Mesh
Mesh& Mesh : : transform (const Transformation& t) ;
/ / ! apply a translat ion on a Mesh

Mesh& Mesh : : translate (std : : vector <Real> u = std : : vector <Real > (3 , 0 .)) ;
Mesh& Mesh : : translate (Real ux , Real uy = 0 . , Real uz = 0 .) ;
/ / ! apply a rotation 2d on a Mesh

Mesh& Mesh : : rotate2d (const Point& c = Point (0 . , 0 .) , Real angle = 0 .) ;
/ / ! apply a rotation 3d on a Mesh

Mesh& Mesh : : rotate3d (const Point& c = Point (0 . , 0 . , 0 .) , std : : vector <Real> u =
std : : vector <Real > (3 , 0 .) , Real angle = 0 .) ;

Mesh& Mesh : : rotate3d (Real ux , Real uy , Real angle) ;
Mesh& Mesh : : rotate3d (Real ux , Real uy , Real uz , Real angle) ;
Mesh& Mesh : : rotate3d (const Point& c , Real ux , Real uy , Real angle) ;
Mesh& Mesh : : rotate3d (const Point& c , Real ux , Real uy , Real uz , Real angle) ;
/ / ! apply a homothety on a Mesh

Mesh& Mesh : : homothetize (const Point& c = Point (0 . , 0 . , 0 .) , Real f a c t o r = 1 .) ;
Mesh& Mesh : : homothetize (Real f a c t o r) ;
/ / ! apply a point r e f l e c t i o n on a Mesh

Mesh& Mesh : : pointReflect (const Point& c = Point (0 . , 0 . , 0 .)) ;
/ / ! apply a r e f l e c t i o n 2 d on a Mesh

Mesh& Mesh : : reflect2d (const Point& c = Point (0 . , 0 .) , std : : vector <Real> u =
std : : vector <Real > (2 , 0 .)) ;

148

http://www.paraview.org
http://anum-maths.univ-rennes1.fr/melina/danielmartin/melina/
http://anum-maths.univ-rennes1.fr/melina/danielmartin/melina/
http://paulbourke.net/dataformats/ply
http://paulbourke.net/dataformats/ply
http://geuz.org/gmsh/

Mesh& Mesh : : reflect2d (const Point& c , Real ux , Real uy = 0 .) ;
/ / ! apply a r e f l e c t i o n 3 d on a Mesh

Mesh& Mesh : : reflect3d (const Point& c = Point (0 . , 0 . , 0 .) , std : : vector <Real> u =
std : : vector <Real > (3 , 0 .)) ;

Mesh& Mesh : : reflect3d (const Point& c , Real ux , Real uy , Real uz = 0 .) ;

For instance:

Mesh m;
m. translate (0 . , 0 . , 1 .) ;

However, if you want now to create a new Mesh by applying a transformation on a Mesh, you should use one of
the following functions instead:

/ / ! apply a geometrical transformation on a Mesh (external)
Mesh transform (const Mesh& m, const Transformation& t) ;
/ / ! apply a translat ion on a Mesh (external)

Mesh translate (const Mesh& m, std : : vector <Real> u = std : : vector <Real > (3 , 0 .)) ;
Mesh translate (const Mesh& m, Real ux , Real uy = 0 . , Real uz = 0 .) ;
/ / ! apply a rotation 2d on a Mesh (external)

Mesh rotate2d (const Mesh& m, const Point& c = Point (0 . , 0 .) , Real angle = 0 .) ;
/ / ! apply a rotation 3d on a Mesh (external)

Mesh rotate3d (const Mesh& m, const Point& c = Point (0 . , 0 . , 0 .) , std : : vector <Real> u =
std : : vector <Real > (3 , 0 .) , Real angle = 0 .) ;

Mesh rotate3d (const Mesh& m, Real ux , Real uy , Real angle) ;
Mesh rotate3d (const Mesh& m, Real ux , Real uy , Real uz , Real angle) ;
Mesh rotate3d (const Mesh& m, const Point& c , Real ux , Real uy , Real angle) ;
Mesh rotate3d (const Mesh& m, const Point& c , Real ux , Real uy , Real uz , Real angle) ;
/ / ! apply a homothety on a Mesh (external)

Mesh homothetize (const Mesh& m, const Point& c = Point (0 . , 0 . , 0 .) , Real f a c t o r = 1 .) ;
Mesh homothetize (const Mesh& m, Real f a c t o r) ;
/ / ! apply a point r e f l e c t i o n on a Mesh (external)

Mesh pointReflect (const Mesh& m, const Point& c = Point (0 . , 0 . , 0 .)) ;
/ / ! apply a r e f l e c t i o n 2 d on a Mesh (external)

Mesh reflect2d (const Mesh& m, const Point& c = Point (0 . , 0 .) , std : : vector <Real> u =
std : : vector <Real > (2 , 0 .)) ;

Mesh reflect2d (const Mesh& m, const Point& c , Real ux , Real uy = 0 .) ;
/ / ! apply a r e f l e c t i o n 3 d on a Mesh (external)

Mesh reflect3d (const Mesh& m, const Point& c = Point (0 . , 0 . , 0 .) , std : : vector <Real> u =
std : : vector <Real > (3 , 0 .)) ;

Mesh reflect3d (const Mesh& m, const Point& c , Real ux , Real uy , Real uz = 0 .) ;

For instance:

Mesh m1;
Mesh m2=translate (m1, 0 . , 0 . , 1 .) ;

Applying a transformation on a Mesh object means applying the transformation on the underlying Geometry
object and adding the suffix "_prime" to the mesh name and the domain names.

6.10 Using geometrical domain

Related to mesh, the geometric domains are fundamental objects because they are the support of integrals or
boundary conditions involved in variational problem. These domains are defined by mesh tools, using names
and sidenames in definition of geometries or given as physical domain in ’geo’ file.

149

6.10.1 Retrieving domains

In order to be used in program, the domains have to be ’retrieved’ as Domain object from mesh:

Strings sn ("y=0" , "y=1" , "x=0" , "x=1") ;
Mesh mesh2d(SquareGeo (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=20 ,

_side_names=sn) , _tr iangle , 1 , _structured) ;
Domain omega=mesh2d . domain("Omega") ;
Domain sigmaM=mesh2d . domain("x=0") ;
Domain sigmaP=mesh2d . domain("x=1") ;
Domain gammaM=mesh2d . domain("y=0") ;
Domain gammaP=mesh2d . domain("y=1") ;

By default, "Omega" is the string name of the main domain of mesh.

It is possible to rename a domain of a mesh:

Strings sn (" " , " " , "x=0" , "x=1/2−") ;
Mesh mesh2d(Rectangle (_origin=Point (0 . , 0 .) , _xlength =0.5 , _ylength =1 , _nnodes=Numbers(20 ,40) ,

_side_names=sn) , _tr iangle , 1 , _structured) ;
mesh2d . renameDomain("Omega" , "Omega−") ;
sn [2] = "x=1/2+" ; sn [3] = "x=1" ;
Mesh mesh2d_p(Rectangle (_origin=Point (0 . 5 , 0 .) , _xlength =0.5 , _ylength =1 , _nnodes=Numbers(20 ,40) ,

_side_names=sn) , _tr iangle , 1 , _structured) ;
mesh2d_p . renameDomain("Omega" , "Omega+") ;
mesh2d . merge(mesh2d_p) ;
Domain omegaM=mesh2d . domain("Omega−") ;
Domain omegaP=mesh2d . domain("Omega+") ;
Domain sigmaM=mesh2d . domain("x=0") ;
Domain sigmaP=mesh2d . domain("x=1") ;
Domain gamma=mesh2d . domain("x=1/2− or x=1/2+") ;

In this example, the unit square is split in two domainsΩ+ andΩ− using the merge and renameDomain functions.
Note that the merging process of meshes concatenates ’same’ domain in a new one named "name1 or name2".

6.10.2 Dealing with normals of a domain

Normal vectors may be required in many variationnal forms, in particular when using BEM like methods. In
(bi)linear forms, they appears with symbolic names _n, _nx ,_ny that corresponds to real normal vectors.
The question is which normal vectors are selected by XLIFE++.

Note that the normal vectors of a domain, say Γ, are computed only if the domain is a manifold, say a sur-
face/curve domain in a 3d/2d space. If they are required, they are automatically computed with the following
default rules:

• if Σ is a boundary (or a part of) of a unique domainΩ, the selected normals are the outwards vectors toΩ

• if Σ is a boundary between two domains (an interface), the selected normals are the towards infinite
vectors

• if Σ is not a boundary, say an immersed manifold, the selected normals are the towards infinite vectors

150

When the boundary or the manifold is not closed, the normal orientations are consistent but the
selected orientation is not predictable.

The user can modify the normal orientation by using the member function of Domain class:
setNormalOrientation(OrientationType[, Domain]) where OrientationType has one of the following
values (default is _undefOrientationType):

_towardsInfinite , _outwardsInfinite / / f o r any side domain
_towardsDomain , _outwardsDomain / / f o r any boundary or i n t e r f a c e

To change the normal orientation of a side domain Sigma, write for instance

Sigma . setNormalOrientation (_towardsInfinite) ; / / towards i n f i n i t e normals
Sigma . setNormalOrientation (_outwardsDomain) ; / / outwards normals ,

/ / UNSAFE f o r an i n t e r f a c e !
Sigma . setNormalOrientation (_outwardsDomain ,Omega) ; / / outwards normals to Omega

All normal vectors of an open manifold are oriented in a consistent way but the global orientation is unpre-
dictable because it depends of the first node encountered. Check the orientation by visualizing the normal
vectors (see below). The global orientation may be controlled by using a virtual "interior" point that orients the
normal vector related to this interior point:

Sigma . setNormalOrientation (_towardsInfinite , Point (0 , 0)) ;

This trick allows to deal with simple open manifolds, but for complex geometries (union of open manifolds for
instance) the global orientation of normal vector remains uncontrollable.

For visualization purpose, the normal vectors can be exported to a vtk file using:

Sigma . saveNormalsToFile ("n_Sigma" , _vtk) ;

They can be also collected in a TermVector object:

Space V1(Omega, P1 , "V1") ; Unknown u1 (V1 , "u1" , 3) ;
TermVector Ns = normalsOn (Sigma , u1) ;

The normals are computed by L2 projection on the space W related to the Unknown used. More precisely, the
normals n in space W are get by solving the problem:∫

Σ
n|t =

∫
Σ

n0|t ∀t ∈W

where n0 is the normal to the element faces. If (w j) denotes the basis of W and N the vector representing the
normal in W basis (n =∑

j n j w j), the following linear system is solved:

151

AN = B , withA=
∫
Σ

wi |w j and Bi =
∫
Σ

n0|wi

The unknown may be an explicit vector unknown or a scalar unknown if the space is a space of vectors. In the
case of a P0 unknown, the normals are normals on element faces with no projection. In the case of Pk Lagrange
unknown, the normals are some interpolated normals on Lagrange dofs.

6.10.3 Map of domains

Some processes require a geometric map between two domains. For instance, to deal with periodic condition
related to two side domains:

u|Σ+ = u|Σ−

the elimination process uses the geometric map F Σ+ −→ Σ−. The simple way to define such map is the
following:

Reals mapPM(const Point& P , Parameters& pa = defaultParameters)
{

Point Q(P) ;
Q(1) −=1;
return Q;

}
. . .

defineMap (sigmaP , sigmaM, mapPM) ;

Note that the mapPm function returns a Vector<Real> which is more general than a Point. Respect this
prototype !

When dealing with curved domains, generally meshed with P1,P2, .. elements, you can use some
natural maps from one domain to the other (think about the scaling transformation of a circle to

an other circle whereas the circles are approximated by polygons). In that case, points are transported
using the given geometrical transformation and an additional projection to guarantee that the image points
belong to the arrival domain. Obviously, the projection induces an error related to the mesh size.

It is currently not possible to define two different maps for a pair of domains.

152

6.10.4 Assign properties to domains

In some problems, physical properties may be different from a domain to other one. This may be managed by
differentiating integrals in variational formulation:∫

Ω1

ρ1(x)u(x) v(x)+
∫
Ω2

ρ2(x)u(x) v(x).

But it may be too intricate if there are a lot of domains or integrals. So there is an alternative method consisting
in defining a unique function ρ and deal with a unique integral:∫

Ω
ρ(x)u(x) v(x)

and assign id to domains that are subdomains:

Real rho (const Point&P , Parameters& pars=defaultParameters)
{
Number mat=materialIdFromParameters (pars) ;
i f (mat==1) return . . .
else return . . .

}
. . .

Domain omega=mesh2d . domain("omega") ; / / whole domain
Domain omega1=mesh2d . domain("omega_1") ; / / subdomain
Domain omega2=mesh2d . domain("omega_2") ; / / subdomain
omega1 . setMaterialId (1) ;
omega2 . setMaterialId (2) ;

6.10.5 Create domain of sides

It may be useful to get the domain of all sides (points, edges, faces) of an existing domain. For instance the set
of all faces of a volumic domain, the set of all edges of a surfacic domain. The sides(Domain) function or the
Domain::sidesDomain() member function do the job:

Mesh msq(SquareGeo (_origin=Point (0 . , 0 .) , _length =1. , _nnodes=2 ,_domain_name="sq" , _side_names="bsq") ,
_tr iangle , 1 , _structured) ;

Domain sq=msq. domain("sq") , bsq=msq. domain("bsq") ;
Domain ssq=sq . sidesDomain () ; / / edges of square domain
Domain ssq2 = sides (sq) ; / / a l t e r n a t e c a l l
Domain sbsq=bsq . sidesDomain () ; / / edges of square boundary domain

Mesh mcu(Cube(_origin=Point (0 . , 0 . , 0 .) , _length =1. , _nnodes=2 ,_domain_name="cu") ,
_hexahedron , 1 , _structured) ;

Domain cu=mcu. domain("cu") ;
Domain scu=cu . sidesDomain () ; / / f a c e s of cube domain

Mesh msp(Sphere (_center=Point (0 . , 0 . , 0 .) , _radius =1. , _nnodes=2 ,_domain_name="sph") ,
_tr iangle , 1 , _gmsh) ;

Domain sph=msp. domain("sph") ;
Domain ssph=sph . sidesDomain () ; / / edges of sphere domain

Note that by applying sidesDomain() on a sides domain, you get the sides of sides:

Mesh mcu(Cube(_origin=Point (0 . , 0 . , 0 .) , _length =1. , _nnodes=2 ,_domain_name="cu") ,
_hexahedron , 1 , _structured) ;

Domain cu=mcu. domain("cu") ;
Domain scu=cu . sidesDomain () ; / / f a c e s of cube domain
Domain sscu=scu . sidesDomain () ; / / edges of cube domain

153

By default, the name of domain is "sides of domain.name()", by specifying a string as argument of sidesDomain()
you can change it.

By using the internalSides(Domain) function or the Domain::internalSidesDomain() mem-
ber function, it is also possible to get the domain of internal sides, i.e. the union of all sides excluding

the sides located on the boundary (in other words the union of shared sides).

6.10.6 Set operation on domain

There exists two set operations : the union of domains (merge function and + operator) and the difference of
two domains (- operator). The merge function accepts up to 6 domains. When there are more than 2 domains to
merge, it is more efficient to use the merge function than to use the + operator. The following example illustrates
the use of set operations on domains:

Rectangle R(_origin=Point (0 . , 0 .) , _xlength =1. , _ylength =1. , _nnodes=31 ,_domain_name="Omega" ,
_side_names={ "Gamma1" , "Gamma2" , "Gamma3" , "Gamma4" }) ;

Domain omega=mR. domain("Omega") , gamma1=mR. domain("Gamma1") , gamma2=mR. domain("Gamma2") ,
gamma3=mR. domain("Gamma3") , gamma2=mR. domain("Gamma4") ;

Domain gamma12 = merge(gamma1,gamma2) ; / / union of elements of gamma1 and gamma2
Domain gamma34 = gamma3 + gamma4; / / union of elements of gamma1 and gamma4
Domain gamma = merge(gamma1,gamma2,gamma3,gamma4, "gamma") ; / / union of elements of gammax
Domain sigma = sides (omega) ; / / s e t of a l l s i d e s of elements of omega
Domain sigma0 = sigma − gamma; / / s e t of a l l internal s i d e s of elements of omega
Domain d = sigma + omega ; / / ERROR : elements have not the same dimension

6.10.7 Cracking a domain

There exist two ways in XLIFE++ to crack a domain. The first one consists in using the GMSH capabilities and
the other one consists in using the intern cracking tool that it is attached to the Mesh class.

Cracking a domain using GMSH capabilities

Theoretically, GMSH allows you to crack domains (1D cracks in 2D meshes, 1D or 2D cracks in 3D meshes).
Cracks can be opened or not. A crack is opened when some boundary nodes of the domain to crack are
duplicated as the other nodes, else it will be a closed crack.
To notify that the segment has to be cracked, you just call the crack routine on it. This is a general routine
defining both opened and closed cracks through 2 additional optional arguments. Default behavior is closed
cracks. You can call the routine closedCrack (only the geometry in argument) to define a closed crack. You
can call the routine openCrack (the geometry and a domain name) to define an opened crack. Inthis case,
the domain name is the boundary domain of the geometry you want to crack that will be opened. Let’s see
following examples to understand this.
There are two ways to define a geometry with a crack inside it: the direct one and the indirect one.

Defining cracks directly

This way is the way you should always do to define a crack. A crack is a geometry inside a geometry of bigger
dimension. So the geometry to be cracked must be defined as a meshed "hole" inside the container geometry.

154

Point x1 (0 , 0 , 0) , x2 (1 , 0 , 0) , x3 (1 , 1 , 0) , x4 (0 , 1 , 0) , x5 (0 . 2 , 0 . 2 , 0) ,
x6 (0 . 8 , 0 . 8 , 0) , x7 (0 . 2 , 0 , 0) , x8 (0 . 8 , 1 , 0) ;

Rectangle rrect8 (_v1=x1 , _v2=x2 , _v4=x4 , _domain_name="Omega" ,
_side_names="Gamma") ;

Segment scrack (_v1=x5 , _v2=x6 , _nnodes=3 , _domain_name="Crack" ,
_side_names="Sigma") ;

openCrack (scrack , "Sigma") ;
Mesh m(rrect8 +scrack , _tr iangle , 1 , _gmsh) ;

Here, it is an opened crack. A side name is given to both ends of the segment. This name will be given to the
routine openCrack to tell which ends are to be opened. Here, it is both.

Defining cracks indirectly

This way is called indirect, compared to the previous one, insofar as you have to link the geometry you want to
crack to the boundaries of the parent geometry and define surfaces from their boundaries:

Point x1 (0 , 0 , 0) , x2 (1 , 0 , 0) , x3 (1 , 1 , 0) , x4 (0 , 1 , 0) , x5 (0 . 2 , 0 . 2 , 0) ,
x6 (0 . 8 , 0 . 8 , 0) , x7 (0 . 2 , 0 , 0) , x8 (0 . 8 , 1 , 0) ;

Segment s1 (_v1=x1 , _v2=x7 , _domain_name="Gamma") ;
Segment s2 (_v1=x2 , _v2=x7 , _domain_name="Gamma") ;
Segment s3 (_v1=x3 , _v2=x2 , _domain_name="Gamma") ;
Segment s4 (_v1=x8 , _v2=x3 , _domain_name="Gamma") ;
Segment s5 (_v1=x8 , _v2=x4 , _domain_name="Gamma") ;
Segment s6 (_v1=x4 , _v2=x1 , _domain_name="Gamma") ;
Segment s7 (_v1=x7 , _v2=x5) ;
Segment s8 (_v1=x5 , _v2=x6 , _nnodes=3 , _domain_name="Crack") ;
Segment s9 (_v1=x6 , _v2=x8) ;
crack (s8) ;
Geometry sf1=surfaceFrom (s7+s8+s9+s5+s6+s1 , "Omega1") ;
Geometry sf2=surfaceFrom (s7+s8+s9+s4+s3+s2 , "Omega2") ;
Mesh m(sf1+sf2 , _tr iangle , 1 , _gmsh) ;

Here, it is a closed crack.

In this example, surfaces have different domain names. You can also give the same domain name

Which way is better ?

direct way indirect way
1D crack in 2D mesh 100% safe 100% safe
2D crack in 3D mesh not 100% safe 100% safe
1D crack in 3D mesh to be tested to be tested

GMSH team is currently working on improving their crack engine to be 100% whatever the case.

155

A look at the mesh file

Let’s see the resulting mesh file for the indirect example above:

$MeshFormat
2.2 0 8
$EndMeshFormat
$PhysicalNames
4
1 1 "Crack"
1 2 "Gamma"
2 3 "Omega1"
2 4 "Omega2"
$EndPhysicalNames
$Nodes
18
1 0.2 0.2 0
2 0.8 0.8 0
3 0.4999999999991927 0.4999999999991927 0
4 0.8 1 0
5 0 1 0
6 0 0 0
7 0.2 0 0
8 1 1 0
9 1 0 0
10 0.4999999999991927 0.4999999999991927 0
11 0.4000000000000001 0.8999999999999999 0
12 0.09999999999935429 0.5999999999998384 0
13 0.6188775510203053 0.8489795918366316 0
14 0.1178571428570276 0.1714285714285426 0
15 0.5999999999991926 0.1 0
16 0.8999999999993543 0.3999999999998387 0
17 0.3811224489791758 0.1510204081631623 0
18 0.8821428571427419 0.8285714285713998 0
$EndNodes

Bounds of the cracked domain are not duplicated (nodes 1 and 2), whereas the middle node of the cracked
domain is duplicated (nodes 3 and 10):

$Elements
36
1 1 2 1 2 1 3
2 1 2 1 2 3 2
3 1 2 2 4 4 5
4 1 2 2 5 5 6
5 1 2 2 6 6 7
6 1 2 2 8 4 8
7 1 2 2 9 8 9
8 1 2 2 10 9 7
9 1 2 1 11 1 10
10 1 2 1 11 10 2
11 2 2 3 7 2 13 3
12 2 2 3 7 1 3 12
13 2 2 3 7 3 11 12
14 2 2 3 7 3 13 11
15 2 2 3 7 2 4 13
16 2 2 3 7 7 1 14
17 2 2 3 7 7 14 6
18 2 2 3 7 5 12 11
19 2 2 3 7 1 12 14
20 2 2 3 7 4 5 11
21 2 2 3 7 4 11 13
22 2 2 3 7 5 6 12

156

23 2 2 3 7 6 14 12
24 2 2 4 11 1 10 17
25 2 2 4 11 2 16 10
26 2 2 4 11 10 16 15
27 2 2 4 11 10 15 17
28 2 2 4 11 7 1 17
29 2 2 4 11 2 4 18
30 2 2 4 11 4 8 18
31 2 2 4 11 9 15 16
32 2 2 4 11 7 15 9
33 2 2 4 11 7 17 15
34 2 2 4 11 2 18 16
35 2 2 4 11 8 9 16
36 2 2 4 11 8 16 18
$EndElements

Segments are also duplicated. If you’re familiar with the msh file format, by reading elements 11 and 24
for instance, we can deduce that domain "Omega1" has geometrical reference 7 and domain "Omega2" has
geometrical reference 11. These references will be used with the cracked domain name to name sides of the
crack, namely "Crack_7" and "Crack_11".

Cracking a domain using intern tool

The way to crack a domain is very similar to the previous one, except the crack function acts on a mesh and a
side domain and not on the geometry:

Point x1 (0 , 0 , 0) , x2 (1 , 0 , 0) , x3 (1 , 1 , 0) , x4 (0 , 1 , 0) , x5 (0 . 2 , 0 . 2 , 0) ,
x6 (0 . 8 , 0 . 8 , 0) , x7 (0 . 2 , 0 , 0) , x8 (0 . 8 , 1 , 0) ;

Rectangle r (_v1=x1 , _v2=x2 , _v4=x4 , _domain_name="Omega" , _side_names="Gamma") ;
Segment s (_v1=x5 , _v2=x6 , _nnodes=3 , _domain_name="Sigma") ;
Mesh m(r+s , _tr iangle , 1 , _gmsh) ; / / mesh as usual
Domain sigma=m. domain("Sigma") ; / / get the crack domain
m. crack (sigma) ; / / mesh i s now cracked

By default, the crack is not open (end points are not duplicated). By specifying _opencrack when calling the
crack function, the crack will be open (end points are duplicated):

m. crack (sigma , _openCrack) ;

Once the mesh is cracked, the sides of the crack are named xxx+ and xxx- where xxx is the name of the original
domain supporting the crack. It is possible to crack a domain with few segments, naming the segments with the
same name. Even, one can crack a closed domain (for instance a polygon).

This tool is working in 2D and 3D, but fails when trying to crack a domain with a triple point (for instance an Y
shape crack).

6.10.8 Having statistics about the mesh quality of a domain

You may want to known statistics about the mesh you use : the minimum, maximum and average value of :

• measure and size of elements

• measure of side of elements

To have these statistics, you have have to call computeStatistics on each domain you want information :

Domain omega = . . .
omega . computeStatistics () ;
theCout << omega << eol ;

157

computeStatistics have an optional boolean argument, whose default value is false, meaning deactivation
of the computation of side statistics.

6.10.9 Summary of domain operations

We only list here the stuff interesting users:

Properties
dom.numberOfElements() -> Number number of elements in domain
dom.setNormalOrientation() -> void set normal orientation of a side domain
dom.parametrization() -> Parametrization access to parametrization if defined
dom.setMaterialId(id) -> void associates a material id
dom.setDomainId(id) -> void associates a domain id
dom.measure() -> Real measure of domain
defineMap(dom1,dom2,m) -> void relates dom1 and dom2 with a map

Domain building
sides(dom) -> Domain domain of sides of elements of dom
internalSides(dom) -> Domain domain of internal sides of elements of dom
crack(dom1,dom2) -> Domain crack domain from both sides of the crack
dom.extendDomain() -> Domain extension domain of a side domain
dom.ficticiousDomain() -> Domain ficticious domain of a side domain
merge(dom1,dom2, ...) -> Domain union of n domains with same element dimension
dom1 + dom2 -> Domain union of 2 domains with same element dimension
dom1 - dom2 -> Domain difference of 2 domains

6.11 Dealing with parametrizations of geometrical domains

XLIFE++ may associate a Parametrization object to each Geometry object. It is accessible using the member
function Geometry::parametrization() :

Disk di (_center=Point (0 . , 0 . , 0 .) , _radius =1. , _nnodes=20) ;
const Parametrization& par=di . parametrization () ;
const Parametrization& par=di . boundaryParametrization () ;

Parametrization exists for any canonical geometry and also for composite geometry, but in that case it is a
PiecewiseParametrization object (inheriting from Parametrization). It is also possible to access to the
parametrization of the boundary. Parametrization class offers access to some useful geometrical properties
(derivatives, jacobian, curvilinear abscissa curvatures, normal and tangent vectors, ...); see Parametrization
documentation. Parametrization objects are attached to the geometry of a GeomDomain object but they can
be accessed straightforward using the same functions:

Disk di (_center=Point (0 . , 0 . , 0 .) , _radius =1. , _nnodes=20 ,domain_name="Omega") ;
Mesh m(di , _tr iangle , 1 , _gmsh) ;
Domain omega=m. domain("Omega") ;
const Parametrization& par=omega . parametrization () ;
const Parametrization& par=omega . boundaryParametrization () ;

Parametrizations are not yet available for geometries coming from OpenCascade.

158

6.12 A full example with periodic cavities

You want to mesh a rectangular domain, but on the bottom side of the rectangle, you want to have periodic
cavities with the following pattern:

l1

l2

l3

h1

h2

Figure 6.39: Definition of the cavity

First, you have to define the first cavity, according to the previous figure:

/ / Definit ion of the c a v i t y
Real l 1 =0.06 , l 2 =0.04 , l 3 =0.08 , h1=0.05 , h2=0.1 , s =0.01;
Point po (1 . , 0 .) ;
Point pa=po+Point (l1 , 0 .) ;
Point pb=pa+Point (0 . , h1) ;
Point pc=pb+Point (− l2 , 0 .) ;
Point pd=pc+Point (0 . , h2) ;
Point pe=pd+Point (2 . * l 2 +l3 , 0 .) ;
Point pf=pe+Point (0 . , − h2) ;
Point pg=pf+Point (− l2 , 0 .) ;
Point ph=pg+Point (0 . , − h1) ;
Point pi=ph+Point (l1 , 0 .) ;

Segment s1 (_v1=po , _v2=pa , _hsteps=s) , s2 (_v1=pa , _v2=pb , _hsteps=s) ,
s3 (_v1=pb , _v2=pc , _hsteps=s) , s4 (_v1=pc , _v2=pd , _hsteps=s) ,
s5 (_v1=pd , _v2=pe , _hsteps=s) , s6 (_v1=pe , _v2=pf , _hsteps=s) ,
s7 (_v1=pf , _v2=pg , _hsteps=s) , s8 (_v1=pg , _v2=ph , _hsteps=s) ,
s9 (_v1=ph , _v2=pi , _hsteps=s) ;

Geometry cavity =s1+s2+s3+s4+s5+s6+s7+s8+s9 ;

When done, you can define the other cavities as results of translations of the first cavity:

/ / Definit ion of the c a v i t i e s

159

Real cL =2.* l 1 + l 3 ; / / c a v i t y length
Number nbcav=10; / / number of c a v i t i e s
Geometry c a v i t i e s = cavi ty ;
for (Number n=1;n<nbcav ; n++) { c a v i t i e s +=translate (cavity , n*cL , 0 .) ; }

Finally, we define borders of the main domain, and mesh the resulting Geometry defined with surfaceFrom:

/ / f u l l geometry
Real sb =0.05;
Point p1 (0 . , 0 .) , p2 (2 . + nbcav*cL , 0 .) , p3 (2 . + nbcav*cL , 1 .) , p4 (0 . , 1 .) ;
Segment s0 (_v1=p1 , _v2=po , _hsteps=Reals (sb , s)) ,

s10 (_v1=Point (1 . + nbcav*cL , 0 .) , _v2=p2 , _hsteps=Reals (s , sb)) ,
s11 (_v1=p2 , _v2=p3 , _hsteps=sb , _domain_name="SigmaP") ,
s12 (_v1=p3 , _v2=p4 , _hsteps=sb) ,
s13 (_v1=p4 , _v2=p1 , _hsteps=sb , _domain_name="SigmaM") ;

Geometry borders=s0+ c a v i t i e s +s10+s11+s12+s13 ;

/ / c r e a t e mesh
Mesh mesh2d(surfaceFrom (borders , "Omega") , t r iangle , 1 , _gmsh) ;
Domain omega=mesh2d . domain("Omega") ;
Domain sigmaP=mesh2d . domain("SigmaP") ;
Domain sigmaM=mesh2d . domain("SigmaM") ;

160

7 Defining the problem

7.1 Domains, spaces, unknowns and test functions

XLIFE++ allows you to solve PDE with the finite elements method, and the spectral elements method. Both
methods approximate all functions w as follows :

Given a basis of n functions ϕi (x, y, z) and wi =
(
w,ϕi

)
, then w(x, y, z) ≈

n∑
i=0

wi ϕi (x, y, z).

The basis functions define the so-called approximation space :

Vh =
{

w, such as w =
n∑

i=0
wi ϕi (x, y, z)

}
.

We will now see how to define spaces, dealing with finite element spaces and spectral spaces. XLIFE++ is
built so that just one object is concerned. Note that XLIFE++ does not declare essential conditions in space
whereas mathematics requires it!

7.1.1 Domains and finite element spaces

With the finite element method, the basis function ϕi is constructed from the elements having i as a degree of
freedom (dof). It is a shape function.
What do we need to define a finite element space ?

• a geometrical definition of the domain where the problem is to be solved,

• a finite element interpolation, such as Pk ,k ∈N for instance.

The geometrical definition of the domain consists in a mesh, which is a set of geometrical elements (such as
triangles, hexahedra, prisms, etc) whose union describes the domain. Inside the program, this description is
handled through an object of type Mesh. The definition of such an object is the very first step of the resolution
process to the problem.

The different ways XLIFE++ provides to define a Mesh are detailed in chapter 6. In order to prepare the second
step, namely the construction of the finite element space, we have to declare variables to handle the main
domain and eventually the subdomains needed by the problem. This can be seen as an extraction from the
mesh of the right information. This is done by means of strings which are the names of the subdomains.
Consequently, the user has to know in advance the names of the subdomains.

When the mesh comes from a file, the names of the domains are generally written inside the file. In the case of a
GMSH mesh file, a default name is automatically generated by XLIFE++ for each domain whose name is not
specified in the file.
When the mesh is built by an internal meshing tool provided by XLIFE++, the name of the main domain is
always “Omega". Moreover, if the mesh is built by a structured generator, the boundary names have to be given
by the user, in a specific order defined in the documentation of the constructor. But if the mesh is built by a
subdivision generator, the names of the subdomains are also automatically generated. So, in any case, the best
way for the user to make sure he uses the right names is to run the short following program, which is in fact the
minimum mandatory program for XLIFE++ usage:

161

#include " x l i f e ++.h"
using namespace x l i f e p p ;

int main () {

i n i t () ; / / i n i t i a l i s a t i o n

Number order =1;
Mesh m(Ball () , _tetrahedron , order , _subdiv , " t e s t ") ; / / f o r example

m. printInfo () ; / / pr in ts mesh information on the terminal
}

The output is:

Mesh' test ' (B a l l − Tetrahedron mesh over 8 octants)
space dimension : 3 , element dimension : 3
Geometry b a l l (center = (0 , 0 , 0) , radius = 1) of shape type b a l l of dimension 3 , BoundingBox

[−1 ,1] x [−1 ,1] x [−1 ,1] ,
MinimalBox [(−1 , −1 , −1) , (1 , −1 , −1) , (−1 , 1 , −1) , (−1 , −1 , 1)] , names of variable : x , y , z
number of elements : 8 , number of v e r t i c e s : 7 , number of nodes : 7 , number of domains : 5

domain number 0 : Omega (I n t e r i o r of the domain)
domain number 1 : Sigma_1 (Boundary : The sphere centered at vertex 4)
domain number 2 : Sigma_2 (Interface : YZ plane)
domain number 3 : Sigma_3 (Interface : XZ plane)
domain number 4 : Sigma_4 (Interface : XY plane)

Now, we can declare the handle variables that will be used just afterwards:

Domain omega = m. domain("Omega") ;
Domain gamma = m. domain("Sigma_1") ;

The definition of a finite element space is done with a key-value system:

key(s) authorized types / possible values examples

_domain Domain _domain=omega
_FE_type Lagrange, Hermite, CrouzeixRaviart,

Nedelec, NedelecFace, NedelecEdge
or Morley

_FE_type=Lagrange,
_FE_type=Nedelec, . . .

_FE_subtype standard, GaussLobattoPoints, first-
Family or secondFamily

_FE_subtype=standard,
_FE_subtype=firstFamily, . . .

_Sobolev_type L2, H1, Hdiv, Hcurl, Hrot, H2, Hinf or
Linf

_Sobolev_type=L2,
_Sobolev_type=H1, . . .

_order single unsigned integer _order=5
_interpolation P0 to P10, P1BubbleP3, Q0 to Q10,

RT_1 to RT_5, NF1_1 to NF1_5, BDM_1
to BDM_5, NF2_1 to NF2_5, N1_1 to
N1_5, N2_1 to N2_5

_interpolation=P3,
_interpolation=NE1_2, . . .

_name String _name="Vh"
_optimizeNumbering,
_notOptimizeNumbering

no value

_withLocateData,
_withoutLocateData

no value

The key _interpolation is a shortcut to the set of keys _FE_type, _FE_subtype _Sobolev_type _order. For
instance _interpolation=NE1_2 is equivalent to _FE_type=Nedelec, _FE_subtype=firstFamily, _order=2, _Sobolev_type=Hcurl

162

The second family edge or face elements are not yet available on triangle and tetrahedron. Edge or
face elements on quadrangle and hexahedron are not yet available.

_optimizeNumbering and _notOptimizeNumbering drive the activation/deactivation of the dofs renumbering
in order to reduce the bandwidth of matrices. The default behavior is _optimizeNumbering.
_withLocateData and _withoutLocateData drive the precomputation of data related to localization of a point
in the mesh. The default behavior is _withLocateData.

Here are some examples of FE space construction:

/ / 2D examples
Mesh mesh2d(Rectangle (_xmin=0 ,_xmax=1 ,_ymin=0 ,_ymax=1 ,_nnodes=10) ,

_tr iangle , 1 , _gmsh) ;
Domain omega=mesh2d . domain("Omega") ;
/ / Lagrange F i n i t e Element spaces
Space V1(_domain=omega, _interpolation=P1 , _name="P1" , _optimizeNumbering) ; / / with numbering

optimisation
Space V2(_domain: −=omega, _interpolation=P2 , _name="P2" , _notOptimizeNumbering) ; / / no numbering

optimisation
Space V3(omega, interpolation (_Lagrange , _standard , 2 0 ,H1) , "P20") ;
FEInterpolation interp=interpolation (_Lagrange , _standard , 2 0 ,H1) ;
Space V4(omega, interp , "P20") ;
/ / Hdiv F i n i t e Element spaces
Space W1(_domain=omega, _interpolation=RT_1 , _name="RT1") ;
Space W3(omega, interpolation (_RaviartThomas , _standard , 3 , Hdiv) , "RT3") ;
/ / Hrot F i n i t e Element spaces
Space R1(_domain=omega, _interpolation=NE1_1 , _name="Ned1") ;
Space R2(_domain=omega, _interpolation=NE1_2 , _name="Ned2") ;
Space R4(omega, interpolation (_Nedelec , _f irstFamily , 4 , Hrot) , "Ned4") ;

/ / 3D examples
Mesh mesh3d(Cube(_origin=Point (0 . , 0 . , 0 .) , _length =1. , _nnodes=n) ,

_tetrahedron , 1 , _gmsh) ;
Domain omega=mesh3d . domain("Omega") ;
Space V1(_domain=omega, _interpolation=P1 , _name="P1") ;
Space V3(omega, interpolation (_Lagrange , _standard , 3 ,H1) , "P3") ;
Space W1(_domain=omega, _interpolation=NF1_1 , _name="Hdiv_Ned1") ;
Space R2(_domain=omega, _interpolation=NE1_2 , _name="Hrot_Ned2") ;

Note that when using the set of keys _FE_type, _FE_subtype _Sobolev_type _order, _FE_subtype
and _Sobolev_type are optional.

When dealing with problem with vector unknown where each component is approximated in the same space
(for instance P1×P1×P1 for the displacement field in elasticity problem), you have to build a ’vector’ unknown
on a ’scalar’ space; see the Unknown section.

Some subspaces or trace spaces are automatically created by XLIFE++. For instance, when an integral on a
boundary (Σ) is involved in a bilinear or linear form, the trace space V|Σ = {v|Σ, v ∈V } is created. This subspace
can be get using the following command:

Space& Vs=V | Sigma ;

7.1.2 Spectral spaces

Spectral spaces are spaces defined from basis functions defined on a mesh domain. Contrary to finite element
basis function given by a local definition on elements, the spectral basis functions are given as global functions
either by their analytic forms or by a set of interpolated functions (say vectors related to an other space).

163

The definition of spectral spaces is done with a key-value system:

key(s) authorized types / possible values examples

_basis Function, TermVector _basis=Function(sin_n, "sin_n",
ps)

_dim single unsigned integer _dim=20, . . .
_basis_dim single unsigned integer _basis_dim=3, . . .
_name String _name="Vh"

Analytic spectral space

Let us see an example :

Real sin_n (const Point& P , Parameters& pa = defaultParameters)
{

Real h = pa ("h") ; / / get the parameter h (user d e f i n i t i o n)
Real n = pa (" basis index ") ; / / get the index of function to compute
return sqrt (2 . / h) * sin (n * pi * P . x () / h) ; / / computation

}

int main (int argc , char ** argv)
{

Mesh m(. . .) ;
Domain omega=m. domain("Omega") ;
Parameters ps (1 . , "h") ;
Number n=10;
Space sp (_domain=omega, _basis=Function (sin_n , " sin_n " , ps) , _dim=n , _name=" sinus basis ") ;
. . .

}

To define a spectral basis, you need to define a function of space coordinates with at least one parameter : the
basis index. To do so, you have to define a standard C++ function, taking a Point and a Parameters. The first
one contains the space coordinates. The second one contains all parameters needed to define the function. The
return type of such function is Real. In the example above, you can notice how the parameter "h" is defined
and used.
Once you have defined your C++ function, you have to pass it to the list of arguments of the Space constructor.
To do so, you have to use the Function object, taking the name of the function, a string, and the Parameters
object.
_dim sets the dimension of the spectral space (the size of the spectral basis). _basis_dim sets the dimension of
basis functions (1 if scalar functions, for instance, that is the default value)

Interpolated spectral space

An interpolated spectral space is defined from a set of interpolated functions, say vectors of an other space
(TermVectors, see Terms chapter). The following example shows how it works:

int main (int argc , char ** argv)
{

Mesh m(. . .) ;
Domain omega=m. domain("Omega") ;
Space V(omega, P1 , "V" , true) ; / / c r e a t e FE space
Unknown u("u" ,V) ; / / c r e a t e FE unknown
Real h=1;
Parameters params (h , "h") ;
Function sinBasis (sin_n , params) ;

TermVectors s i nInt (N) ; / / interpolated functions
for (Number n=0; n<N; n++)

{

164

sinBasis . parameter (" basis index ") =n ;
s i nInt (n+1)=TermVector (u , omega, sinBasis , "c"+tostring (n)) ;

}
Space S (_basis=sinInt , _name="V interpolated sin (n* pi * y) ") ;

The Unknown object is described in the following section.

Advanced usage

It is possible to manipulate spectral basis by instanciate such objects:

SpectralBasisFun sbFun (omega, sinBasis , N, 1) ;
SpectralBasisInt sbInt (s inI nt) ;

Thus it is possible to evaluate basis functions at a point:

Real r ;
Point P (1 . , 0 .) ;
sbFun . function (n , P , r) ;
sbInt . function (n , P , r) ;

Be cautious, the type of returned argument r has to be consistent with the type of basis functions.

7.1.3 Unknowns and test functions

Once you have defined the space, the next step is to define unknowns and test functions on this space.

Unknown(Space& sp , const String& name, Dimen d=1) ;
TestFunction (Space& sp , const String& name, Dimen d=1) ;

According to the problem, you may want to define scalar or vector unknowns or test functions. The third
argument is dedicated to this.

In case of a multiple unknowns problem, the order of unknowns may be sensitive. By default, they are sorted by
the construction order, using the rank property of unknown:

Unknown u(V , "u" , 2) ;
Unknown p(V , "p") ;
TestFunction v ("v" ,u) ;
TestFunction q("q" ,p) ;
cout<<u . rank () <<" "<<v . rank () <<" "<<p . rank () <<" "<<q . rank () ;

This exemple gives 1 3 2 4.

It is possible to assign the rank of an unknown at the construction:

Unknown u(V , "u" , 2 , 2) ; / / rank 2
Unknown p(V , "p" , 1 , 1) ; / / rank 1
TestFunction v (u , "v" , 4) ; / / rank 4
TestFunction q(p , "q" , 3) ; / / rank 3
cout<<u . rank () <<" "<<v . rank () <<" "<<p . rank () <<" "<<q . rank () ;

Be cautious, rank has to be unique! It is not mandatory that ranks follow.

The setRanks function may be used to change the ranks of a collection of unknowns:

. . .
setRanks (u, 1 , p, 2 , v , 1 1 ,q , 1 2) ;

165

7.1.4 Dealing with collections

When there is a lot of domains, spaces, unknowns it may be more friendly to work with indexed collection.
This is the purpose of the classes Domains, Interpolations, Spaces , Unknowns and TestFunctions. As an
example, suppose you want to deal with 4 domains:

Strings sn ("Gamma1" , "Gamma2" , "Gamma3" , "Gamma4") ;
Mesh mesh2d(Rectangle (_xmin=0 ,_xmax=0.5 ,_ymin=0 ,_ymax=1 ,_nnodes=Numbers(3 , 6) ,

_domain_name="Omega" , _side_names=sn) , _tr iangle , 1 , _structured) ;
/ / get the mesh domains in a Domains o b j e c t

Domains doms(4) ;
for (Number i =1; i <=4; i ++) doms(i) =mesh2d . domain(i −1) ;
/ / c r e a t e one space by domain (say P1)
Spaces Vs (4) ;
for (Number i =1; i <=4; i ++) Vs (i) =Space (doms(i) , _P1 , "V_"+tostring (i)) ;
/ / c r e a t e unknowns

Unknowns us (4) ;
for (Number i =1; i <=4; i ++) us (i) =Unknowns(Vs (i) , "u"+tostring (i)) ;
/ / c r e a t e TestFnctions
TestFunctions vs=dualOf (us) ;

Other syntaxes are available:

Unknown u1 (V1 , "u1") , u2 (V2 , "u2") , u3 (V3 , "u3") ;
Unknowns us1 (u1 , u2 , u3) ;
Unknowns us2 ; us2<<u1<<u2<<u3 ;
Unknowns usi ={u1 , u2 , u3 } ; / / only in C++2011

7.2 Forms

Given a PDE, you have to write a variational formulation. As a result, you have an equality between 2 forms
: a bilinear form on the unknown u and the tests function v , generally called a, and a linear form on the test
function v , generally called l . Both are defined as linear combination of single or double integrals on operators
on unknowns and, in the bilinear case, test functions, and an integration method or a quadrature rule.

BilinearForm intg (const GeomDomain& dom, const OperatorOnUnknowns& opus , QuadRule qr=
_defaultRule , Number qro=0) ;

BilinearForm intg (const GeomDomain& dom, const LcOperatorOnUnknowns& opus , QuadRule qr=
_defaultRule , Number qro=0) ;

BilinearForm intg (const GeomDomain& domx, const GeomDomain& domy, const OperatorOnUnknowns& opus ,
QuadRule qr = _defaultRule , Number qro =0) ;

BilinearForm intg (const GeomDomain& domx, const GeomDomain& domy, const KernelOperatorOnUnknowns&
kopus , QuadRule qr = _defaultRule , Number qro = 0) ;

LinearForm intg (const GeomDomain& dom, const OperatorOnUnknown& opu , QuadRule qr = _defaultRule ,
Number qro = 0) ;

LinearForm intg (const GeomDomain& dom, const Unknown& u , QuadRule qr = _defaultRule , Number qro =
0) ;

LinearForm intg (const GeomDomain& domx, const GeomDomain& domy, const OperatorOnUnknown& opu ,
QuadRule qr = _defaultRule , Number qro = 0) ;

LinearForm intg (const GeomDomain& domx, const GeomDomain& domy, const Unknown& u , QuadRule qr =
_defaultRule , Number qro = 0) ;

In simple case, symmetry property of a bilinear form may be deduced from its definition. In some cases, the
analysis being to intricate, the symmetry property is not deduced. It is the reason why it is possible to enforce
this property in the definition of bilinear form involving integral by specifying as last argument one of the
symmetry keywords:

_noSymmetry , _symmetric , _skewSymmetric , _sel fAdjoint , _skewAdjoint

For instance, if A is a symmetric matrix :

166

BilinearForm b = intg (S , u | v) ; / / i m p l i c i t symmetry
BilinearForm b = intg (S , (A*u) | v , _symmetric) ; / / e x p l i c i t symmetry

Often, bilinear forms are some linear combination of integrals and the symmetry may result of the sum of non
symmetric integrals. In such cases, it is possible to force the symmetry by using the following syntax:

BilinearForm d = intg (omega, dx (u) *dy (v)) +intg (omega, dy (u) *dx (v)) ; / / considered as non−symmetric !
d . symType () =_symmetric ; / / defined as symmetric

Be cautious, the usage of symType() is restricted to single unknown bilinear forms!

Keep in mind that u and v represent shape functions of the space which are real functions!. Thus,
there is no reason to conjugate test functions.

7.2.1 Operators on unknowns

XLIFE++ management of operators on unknowns is as close as possible to the mathematical description, few
operators are overloaded and a lot of possibilities are offered, For instance:

mathematical expression XLIFE++ translation comment
∇(u) grad(u) u unknown
∇(u) ·∇(v) grad(u)|grad(v) u unknown, v test function
(A∗∇(u)) ·∇(v) (A*grad(u))|grad(v) u unknown, v test function, A a matrix
(F (x)∗∇(u)) ·∇(v) (F*grad(u))|grad(conj(v)) u unknown, v test function, F a function
u(x)*G(x,y)*v(y) u*G*v u unknown, v test function, G a kernel

Defining functions needs C++ functions with specific prototypes :

OUT f1 (const Point& P , Parameters& pa = defaultParameters) ; / / scal ar form
Vector<OUT> f2 (const Vector<Point>& Ps , Parameters& pa = defaultParameters) ; / / vector form

The return type OUT can be one of the following : Real, Complex, Vector<Real>, Vector<Complex>, Matrix<Real> or
Matrix<Complex>.
You can use the function directly in your integral, or define Function object such as

Function F(f1 , "name" , params) ;

You can optionally give a name to the Function object and a Parameters object when needed.
Defining kernels needs also C++ functions with specific prototypes

OUT f1 (const Point& P , const Point & MParameters& pa = defaultParameters) ; / / scal ar form
Vector<OUT> f2 (const Vector<Point>& Ps , const Vector<Point>& Ms, Parameters& pa =

defaultParameters) ; / / vector form

You can use the function directly in your integral, or define Kernel object such as

Kernel F(f1 , "name" , params) ;

You can optionally give a name to the Kernel object and a Parameters object when needed.
The complete list of operators is in the following, where u is either a scalar or vector unknown, x, y and z are the
cartesian coordinates and n is the normal):

167

mathematical built in functions unknown
identity id(u) or u scalar or vector
∂t d0(u) or dt(u) scalar or vector
∂x d1(u) or dx(u) scalar or vector
∂y d2(u) or dy(u) scalar or vector
∂z d3(u) or dz(u) scalar or vector
∇ grad(u) or nabla(u) scalar or vector
div div(u) vector
curl curl(u) or rot(u) vector
∇τ (surfacic) gradS(u) or nablaS(u) scalar or vector
divτ (surfacic) divS(u) vector
curlτ (surfacic) curlS(u) or rotS(u) vector
∇abc = (a∂x ,b∂y ,c∂z) gradG(u,a,b,c) or nablaG(u,a,b,c) scalar or vector
∇abc . divG(u,a,b,c) vector
∇abc× curlG(u,a,b,c) or rotS(u,a,b,c) vector

mathematical built in functions unknown
ε epsilon(u) vector
εi abc epsilonG(u,i,a,b,c) vector
εR epsilonR(u) = (ε11,ε11,ε22,ε33,ε32,ε31,ε21) vector
voigtToM voigtToM(u)= [u1 u6 u5; u6 u2 u4; u5 u4 u3] vector
n∗ nx(u) or _n*u scalar
n. ndot(u) or _n.u vector
n× ncross(u) or _nˆu vector
n ×n× ncrossncross(u) or _nˆ_nˆu vector
n.∇ ndotgrad(u) or _n.grad(u) scalar
n ×∇ ncrossgrad(u) or _nˆgrad(u) scalar
n div ndiv(u) or _n*div(u) vector
n ×curl ncrosscurl(u) or _nˆcurl(u) vector
[] (jump across) jump(u) scalar or vector
{ } (mean across) mean(u) scalar or vector

jump and mean operators are to be used relatively to a domain of side elements (interface of domains
or set of sides, see sidesDomain function). They must be interpreted on a side element S of two

elements E1 and E2 as

[u]S = u1 −u2 and {u}S = 1

2
(u1 +u2)

where u1 = (u|E1)|S and u2 = (u|E2)|S . The sign of jump is sensitive to the choice of the first element. Regarding
the context, XLIFE++ may choose the right one but it is not absolutely safe. Note that for DG approximations,
generally the formulation is not sensitive to this choice. For instance∫

S

[[
u

]]
S .

{∇v
}

S = 1

2

∫
S

(
u1n1 +u2n2

)
.
(∇v1 +∇v2

) = 1

2

∫
S

(
u1 −u2

)(∇v1.n1 +∇v2.n1
)

(n2 =−n1) = 1

2

∫
S

(
u2 −u1

)(∇v2.n2 +∇v1.n2
)

=
∫

S

[
u

]
S

{∇v.n
}

S

Note that the last expression is the way to take into account such DG term in XLIFE++.

168

A new and experimental feature allows to combine different operations on the the unknown u and
the test function v inside the same integral:

BilinearForm d = intg (omega, grad (u) | grad (v)) + intg (omega, u* v) ;
BilinearForm d = intg (omega , (grad (u) | grad (v)) + u* v) ; / / new syntax
LinearForm l = intg (omega, v) + intg (omega, dx (v)) ;
LinearForm l = intg (omega, v + dx (v)) ; / / new syntax

It is even possible to factorize expressions:

BilinearForm d = intg (omega, (dx (u) + dy (u)) * v) ;

Because of the operation order induced by C++ language, parens must be added sometimes to help the
interpretation of the integral by XLIFE++. This occurs frequently for low-priority C++ operation such as |
and ˆ.

7.2.2 Operators on kernel

Similar to operator on unknowns, XLIFE++ allows to apply some operators on kernel (say k(x, y)). The complete
list of operators is the following :

mathematical built in functions unknown
identity id(k) or k scalar or vector
∇x grad_x(k) or nabla_x(k) scalar or vector
∇y grad_y(k) or nabla_y(k) scalar or vector
divx div_x(k) vector
divy div_y(k) vector
curlx curl_x(k) or rot_x(k) vector
curly curl_y(k) or rot_y(k) vector
nx∗ ntimes_x(k) or _nx*k scalar
ny∗ ntimes_y(k) or _ny*k scalar
nx . ndot_x(k) or _nx.k vector
ny . ndot_y(k) or _ny.k vector
nx× ncross_x(k) or _nxˆk vector
ny× ncross_y(k) or _nyˆk vector
nx × (nx×) ncrossncross_x(k) or _nxˆ(_nxˆk) vector
ny × (ny×) ncrossncross_y(k) or _nyˆ(_nyˆk) vector

mathematical built in functions unknown
nx .∇x ndotgrad_x(k) or _nx.grad_x(k) scalar
ny .∇y ndotgrad_y(k) or _ny.grad_y(k) scalar
nx divx ndiv_x(k) or _nx*div_x(k) vector
ny divy ndiv_y(k) or _ny*div_y(k) vector
nx ×curlx ncrosscurl_x(u) or _nxˆcurl_x(k) vector
nx .ny∗ nxdotny_times(k) or (_nx|_ny)*k scalar or vector
(nx ×ny). nxcrossny_dot(k) or (_nxˆ_ny)|k vector
(ny ×nx). nycrossnx_dot(k) or (_nyˆ_nx)|k vector
(nx ×ny)× nxcrossny_cross(k) or (_nxˆ_ny)ˆ k vector
(ny ×nx)× nycrossnx_cross(k) or (_nyˆ_nx)ˆ k vector

In operators, the normal vectors _n, _nx, _ny are symbolic ones. They refer to real normal vectors related to the
domain involved in integrals where operators appear. See the section 6.10.2 to know how normal vectors are
oriented.

When one of the argument is a complex, the "inner product" means a hermitian product.

169

7.2.3 Available kernels

There are currently some kernels available in XLIFE++ for 2D and 3D problems: Laplace and Helmholtz Green
functions, and Mazxwell Green tensor in 3D:

• The Laplace kernel used for 2D problems is

L2d (x, y) =− 1

2π
log

(∥x − y∥) ,

and for 3D we use

L3d (x, y) = 1

4π∥x − y∥
• The Helmholtz Green function for 2D problems used is

H2d (k; x, y) = i

4
H (1)

0

(
k∥x − y∥) ,

with H (1)
0 thefirst kind Hankel function of order 0. Finally, for 3D problems we use

H3d (k; x, y) = e i k∥x−y∥

4π∥x − y∥ .

• The harmonic Maxwell Green tensor for 3D problems is defined as:

M3d (k; x, y) = H3d (k; x, y) I3 + 1

k2 Hess(H3d (k; x, y)).

Examples of declaration of these kernels follow:

Kernel GLap2D=Laplace2dKernel () ;
Kernel GLap3D=Laplace3dKernel () ;
Parameters pars (k , "k") ; / / We provide the wavenumber k using a Parameters
Kernel GHelm2D=Helmholtz2dKernel (pars) ;
Kernel GHelm3D=Helmholtz3dKernel (k) ;

7.2.4 Interpolated function in operator

Interpolated functions are function defined from finite element approximation :

f (x) = ∑
i=1,q

fi wi (x)

where wi are some finite element shape functions and fi are some real/complex scalar/vector coefficients.
With Lagrange FE, fi = f (xi) where xi is the node related to the shape function wi .
In XLIFE++ lib, such function may be represented by a TermVector object that handles both a FE space, thus
the shape functions, and the coefficients in an array of values. By specifying a TermVector object in an operator
construction, an interpolated function will be handled.

Mesh m(Square (_origin=Point (0 . , 0 .) , _length =1. , _nnodes=5 ,_domain_name="Omega") ,
_tr iangle , 1 , _structured) ;

Domain omega=m. domain("Omega") ;
Space V(omega, P1 , "V") ; Unknown uh(V , "u") ;
TermVector x1 (u , omega, _x1 , "x1") ; / / interpolated function
LinearForm l 1 =intg (omega, x1 *u) ;
LinearForm l 2 =intg (omega , (x1^3) *u) ;

170

Such approach may be very useful for non linear problem when non linear terms are taken into account at a
previous step in a iterative scheme.

For the moment, the way that XLIFE++ processes, consists in transforming the TermVector object
in a Function object that performs the computation of the sum outside of any context : first locate

the finite element that contains the point x, then evaluate using local interpolation. As the localization
algorithm has a log complexity, computation of the interpolated function at a point is not so time expansive
but it is not optimal, in particular when computing integral.

7.2.5 Additional operation in operator

Transpose and conjugate

Some quantities (function or kernel) involved in a bilinear form may have to be transposed or conjugated.
XLIFE++ provides 3 operators to do it:

• tran to transpose an expression

• conj to conjugate an expression

• adj to conjugate and transpose an expression

Obviously, transposition has only meaning for functions or kernels returning a matrix! In XLIFE++, the shape
functions related to a FE space are real scalar/vector functions, so transpose or conjugate an unknown has no
interest and, by the way, is not allowed!

Extension

Some problems require to deal with the extension of a function/kernel, say f or k, from a boundary (say Γ) to
its parent domain (sayΩ). XLIFE++ provides a particular extension process that extends function/kernel from
the boundary Γ to its neighborhood, that is the set of elements that have at least one vertex located onto Γ, say
Γext . More precisely, the extension formula is:

EΓ(f)(x) = ∑
Mi∈Γ

f (Mi)wi (x)

where Mi are some mesh vertices and wi the one order Lagrange shape functions related to the vertex Mi . Such
extension vanishes outside Γext .

Define an extension is very easy. You have to specify the boundary domain to be extended, if not unique, the
domain where you want to do the extension and the variable if you want to extend a kernel :

Extension Eg (Gamma) ; / / extend from Gamma to elements in i t s neighborhood
Extension Eg (Gamma, _y) ; / / extend from Gamma f o r variable y
Extension Eg (Gamma,Omega) ; / / extend from Gamma to Omega
Extension Eg (Gamma,Omega, _x) ; / / extend from Gamma to Omega f o r variable x

The set of elements in the neighborhood of Γ can be explicitely constructed by using the extendedDomain
member function of Domain :

Domain Gamma_ext=Gamma. extendDomain () ; / / elements having a side on Gamma
Domain Gamma_ext=Gamma. extendDomain (true) ; / / elements having a vertex on Gamma

Finally, to use extension in bilinear form, write for instance

171

Extension Eg (Gamma, Omega) ;
BilinearForm a=intg (Omega, u*Eg (f) * v) ; / / extension of a function
Eg . var=_y ;
BilinearForm a=intg (Gamma,Omega, u*Eg (k) * v) ; / / extension of a kernel along y

The computation are automatically restricted to elements of the extended domain, so you do not
have to restrict yourself.

Be cautious, when applying an extension to an object involving kernel derivatives; for instance

EΓ,x [d y(k)](x, y) = ∑
Mi∈Γ

d y(k)(Mi , y) wi (x)

EΓ,x [d x(k)](x, y) = ∑
Mi∈Γ

d x(k)(Mi , y) wi (x)+ ∑
Mi∈Γ

k(Mi , y)d x(wi)(x).

Summary of main operator syntaxes

In the following:

• val represents any constant value, that is a real or a complex value, a real or a complex vector or a a real
or a complex matrix,

• fun represents a Function object or an explicit C++ function
• opfun represents an OperatorOnFunction object, say difop(Function); only few differential operators

are available
• ker represents a Kernel object or an explicit C++ function
• opker represents an OperatorOnKernel object, say difop(Kernel); only few differential operators are

available
• tv represents a TermVector object
• aop represents an algebraic operator, one of * | ^ %

[val/fun/opfun/tv aop] [difop](Unknown) [aop val/fun/opfun/tv] -> opu
opu [aop opu] -> opus

opu aop ker/opker [aop opu] -> kopus

7.2.6 Integration method

When defining a linear or a bilinear form, the user may specify the integration method or a list of integration
methods to use. Currently the following objects are available:

• QuadratureIM : quadrature methods based on quadrature points and weights, see quadrature rule in the
next section

• IntegrationMethods: specific methods to integrate singular kernel in bilinear form, see details in the
next section

To use it in a computation, specify an integration object in the definition of the form:

QuadratureIM quadIM(Gauss_Legendre , 2) ; / / standard quadrature method
BilinearForm b l f =intg (omega, uv , quadIM) ;
BilinearForm b l f =intg (omega, uv , Gauss_Legendre , 2) ; / / shortcut syntax
/ / f o r singular i n t e g r a l s
IntegrationMethods ims (Sauter_Schwab , 3 , 0 . , Gauss_Legendre , 3) ;
BilinearForm b l f =intg (sigma , sigma , u*G*v , ims) ;
IntegrationMethods imr (Gauss_Legendre , 3) ;
LinearForm l f =intg (sigma ,G*u , imr) ,U) ;

172

Note that integration method is attached to the integral definition. So you can mix different integration methods
in a bilinear form :

BilinearForm b l f = intg (omega, grad (u) | grad (v) , Gauss_Lobatto , 1)
+ intg (omega, u*v , Gauss_Legendre , 2) ;

Using mixed integration methods is generally slower than using the same integration method!

It is not mandatory to specify an integration method in form; a default one is chosen according to
the order of unknown interpolations, the order of differential operators involved and the fact that

there are functions in operator on unknowns. For FE form, we use the minimal quadrature rule for shapes
involved in domain wich integrates exactly the polynoms of order

k = (deg (u)−or der (di f (u)))∗ [deg (u)]∗ [(deg (v)−or der (di f (v)))∗ [deg (v)]]

where deg (u) (resp. deg (v)) is the degree of polynoms used by u-interpolation (resp. v-interpolation),
or der (di f (u)) (resp. or der (di f (v))) is the order of differential operator applied to u (resp. v). [] means an
optional coefficient.
The table of best rules is given in the developer’s documentation.

Quadrature rules

To perform computation of integrals over reference elements, XLIFE++ provides a lot of quadrature formulae
of the form : ∫

Ê
f (x̂)d x̂ ≈ ∑

i=1,q
ωi f (x̂i)

where (x̂i)i=1,q are quadrature points belonging to reference element Ê and (wi)i=1,q are quadrature weights.
Up to now, there exist quadrature formulae for unit segment]0,1[, for unit triangle, for unit quadrangle (square),
for unit tetrahedron, for unit hexahedron (cube), for unit prism and for unit pyramid. The following tables gives
the list of quadrature rule available:

General rules

Gauss-Legendre Gauss-Lobatto Grundmann-Muller symmetrical Gauss
segment any odd degree any odd degree

quadrangle any odd degree any odd degree odd degree up to 21
triangle any odd degree any odd degree degree up to 10

hexahedron any odd degree any odd degree odd degree up to 11
tetrahedron any odd degree any odd degree degree up to 10

prism degree up to 10
pyramid any odd degree any odd degree degree up to 10

Particular rules

nodal miscellaneous
segment P1 to P4

quadrangle Q1 to Q4
triangle P1 to P3 Hammer-Stroud 1 to 6

hexahedron Q1 to Q4
tetrahedron P1, P3 Stroud 1 to 5

prism P1 centroid 1, tensor product 1,3,5
pyramid P1 centroid 1, Stroud 7

The developer documentation gives more details on quadrature rules and indicates what best rules (in terms of
number of quadrature points) are selected when only shape and degree are specified. Generally for low degree

173

(d ≤ 3) a specific rule is selected, for intermediate degree (4 ≤ d ≤ 10) a symmetrical Gauss rule is selected and
for high degree a quadrature rule working at any degree (Gauss-Legendre or Grundman-Muller) is chosen.

How to choose the quadrature rule ?

By using intg with a specific pair of arguments:

• QuadRule qr, to give the quadrature rule formulae (possible values are Gauss_Legendre, Gauss_Lobatto,
nodalQuadrature, miscQuadrature, Grundmann_Moller or symmetrical_Gauss),

• Number qro, to give the quadrature rule degree:

BilinearForm a=intg (Omega, u*v , Gauss_Legendre , 4) ;

When no rule and degree are given, the degree is determined by looking the degree of polynomials involved in
the (bi)linearform taking into account derivative operators and the existence of an additional user function. For
instance, the following bilinear form in P k finite element space∫

Ω
f u v

will ask for a quadrature rule of degree d = 3k while the following bilinear form∫
Ω
∇u.∇v

will ask for a quadrature rule of degree d = 2(k −1).
Once the degree d is determined, XLIFE++ chooses the best quadrature rule available for degree d and element
shapes involved in the mesh domain.

The user choice is always a priority even his choice leads to under integration. In doubt, let XLIFE++
work for you!

Integration methods for integral equation or integral representation

Integral equation involves singular kernels. To deal with the singularity in integrals, some particular methods
are proposed to users. LenoirSallesxx classes compute in an analytic way integrals involving 2D or 3D
Laplace kernel but with low order finite elements (P0 or P1) whereas there are methods for any finite element
order but specific problem dimension such as SauterSchwabIM for 3D problems and DuffyIM for 2D problems.
Currently, only log (r) in 2D and r−1 in 3D singularities are adressed.

SauterSchwabIM 1 class adresses computation of integral∫
Γ

∫
Σ

K (x, y)d x d y

where Γ and Σ are 2D domains (in 3D) (partition of triangles) and K (x, y) a kernel having possibly a
singularity of type 1/||x − y ||. This technique is well adapted for most of second order PDE in 3D. It uses
Gauss-Legendre quadrature on segment. When creating such method, you may specify the quadrature
order on segment:

SauterSchwabIM ssIM (5) ;

174

The default order is 3. Sauter-Schwab method works for any finite element on triangle.

The Sauter-Schwab method consist in transforming the integral over a triangle pair to some
integrals over the unity cube of R4 and then computing each integral using a 4 tensor product

of standard quadrature formula on segment. As a consequence, the number of points where the
kernel is evaluated grows as a power 4 of the number of quadrature points used on segments. So
increasing the order of quadrature on segment may be very time expansive.

DuffyIM2 class adresses computation of integral∫
Γ

∫
Σ

K (x, y)d x d y

where Γ and Σ are 1D domains (in 2D) (partition of segments) and K (x, y) a kernel having possibly a
singularity of type log(∥x − y∥). This technique is well adapted for most of second order PDE in 2D. It uses
Gauss-Legendre quadrature on segment.

When creating such method, you may specify the quadrature order on segment:

DuffyIM dufIM (5) ;

The default order is 6. Duffy method works for any finite element on segment.

LenoirSalles2dIM and LenoirSalles3dIM 3 classes adress computation of integral∫
Γ

∫
Σ

p(x)K (x, y) q(y)d x d y

or ∫
Γ

∫
Σ

p(x)∂ny K (x, y) q(y)d x d y

where Γ and Σ 2D domains in 3D (partition of triangles) or 1D domains in 2D (partition of segments),
K (x, y) the Laplace kernel and p, q are either piecewise constant functions or piecewise linear functions.
It deals only the case of elements sharing at least one vertex. So for elements that are not close you a
standard quadrature has to be used. These classes do not manage any parameter:

LenoirSalles3dIM l s 2 ;
LenoirSalles2dIM l s 3 ;

LenoirSalles2dIR and LenoirSalles3dIR classes address computation of integral

i (x) =
∫
Γ

K (x, y) q(y)d y

or

i (x) =
∫
Γ
∂ny K (x, y) q(y)d y

where Γ is either a 2D domain in 3D (partition of triangles) or a 1D domain in 2D (partition of segments),
K (x, y) the Laplace kernel and q is a either piecewise constant function or piecewise linear function.
These classes do not manage any parameter:

175

LenoirSalles3dIR l s 2 ;
LenoirSalles2dIR l s 3 ;

CollinoIM class is a wrapper to an integration method developped by F. Collino to deal with some integrals
involved in 3D Maxwell BEM when using Raviart-Thomas elements of order 1 (triangle). More precisely, it
can compute the integrals:

∫
Γ

∫
Γ

(
k H(k; x, y) w j (y).wi (x)− 1

k
H(k; x, y)div w j (y)div wi (x)

)
and ∫

Γ

∫
Γ

(∇y H(k; x, y)×w j (y)
)

.wi (x),

where (wi)i=1,n denote the Raviart-Thomas shape functions and H(k; x, y) the Green function of the
Helmholtz equation (wave number k) in the 3D free space. For instance, to compute the first integral,
write

Space RTh(_domain=Gamma, _interpolation=RT_1 , _name="RTh") ;
Unknown U(RTh, "U") ; TestFunction V(U, "V") ;
IntegrationMethods imc (CollinoIM (_computeI1 , 3 , 6 4 , 1 2 , 3 .)) ;
Kernel H = Helmholtz3dKernel (k) ;
BilinearForm ac = intg (Gamma, Gamma, k * (U*H| V) − (1 . / k) * (div (U) *H* div (V)) , imc) ;
TermMatrix S (ac) ;

Note the non standard expression of the bilinear form that incorporates a linear combination of kernel
operator on unknowns. Use this syntax ONLY in this context! The parameters involved in the CollinoIM
object correspond to the default values.

Define several integration methods

Computing integral with kernel is a costly business because of the kernel singularity. But in fact, this singularity
is effective only in particular situations : when two elements share at least one vertex in BEM computation
or when the point is to close to an element in IR computation. This is the reason why XLIFE++ provides a
way to choose different integration methods regarding a geometric criteria : the relative distance between the
centroids of elements :

dr (Ei ,E j) = ||Ci −C j ||
max(di am(Ei),di am(E j))

or the relative distance between a point and the centroid of element:

dr (x,Ei) = ||x −Ci ||
di am(Ei)

.

The IntegrationMethods class collect integration methods with two additional informations:

• the bound value b telling the integration method is applied when dr ≤ b

• the part of the function concerned by the integration method, one of _allFunction, _regularPart,
_singularPart, the default value is _allFunction.

There is a lot of way to define an IntegrationMethods object. Here are given some classical forms:

IntegrationMethods ims1 (Sauter_Schwab , 3 , 0 . , defaultQuadrature , 5) ;
IntegrationMethods ims2 (Duffy , 5 , 0 . , Gauss_Legendre , 1 0 , 1 . ,

Gauss_Legendre , 5 , 2 . ,
Gauss_Legendre , 3) ;

IntegrationMethods ims3 (Lenoir_Salles_3d , Gauss_Legendre , 5) ;
IntegrationMethods imsh (LenoirSalles2dIR () , _singularPart , theRealMax ,

QuadratureIM (_GaussLegendreRule , 4) , _regularPart , theRealMax) ;

176

For instance, the definition of ims2 corresponds to the following choice:

Beware of the definition of an IntegrationMethods object. In particular, check that all the cases
are handled.

7.2.7 Integral calculation tools

Besides integration methods related to finite element computations, XLIFE++ provides some general tools to
approximate 1D integrals: ∫ b

a
f (t)d t .

Uniform rectangle, trapeze and Simpson methods

XLIFE++ handles the uniform rectangle, trapeze, Simpson method (h = b−a
n) :

rectangle :
∫ b

a
f (t)d t ∼ h

∑
i=0,n−1

f (a + i h)

trapeze :
∫ b

a
f (t)d t ∼ h

2

(
f (a)+4

∑
i=1,n/2

f (a + (2i −1)h)+2
∑

i=1,n/2−1
f (a +2i h)+ f (b)

)
(n even)

Simpson :
∫ b

a
f (t)d t ∼ h

3

(
f (a)+2

∑
i=1,n−1

f (a + i h)+ f (b)

)

with f a real or complex function. They respectively integrate exactly P0 polynomials, P1 polynomials and P3
polynomials and approximate the integral with order 1, 2 and 3.

For each method, three template functions (with names rectangle, trapz, simpson) are provided according
to the user gives the values of f on a uniform set of points, the function f or a function f with some parameters
(e.g trapeze method):

Real f (Real t) { return t * t ; }
Complex fp (Real t , Parameters& pars)

{
Int p=pars ("p") ;
return pow(t , p) *exp (i * t) ;

}
. . .

Number n=100;
Real i n t f = trapz (f , 0 , 1 ,n) ; / / int_ [0 , 1] f (t) dt
Parameters pa (2 , "p") ;
Complex i n t f p = trapz (fp , pa , 0 , 1 ,n) ; / / using parameters
Vector<Real> vf (n+1) ;
Real h=1./n ;
for (Number k =0;k<=n ; k++) vf [k]= f (k*h) ;
Real i n t f v = trapz (vf , h) ; / / using values instead of function

For advanced users, there exists also functions using iterators.

177

Adaptative trapeze

XLIFE++ provides also an adaptive trapeze method using the improved trapeze method (0.25(b −a)(f (a)+
2 f ((a +b)/2)+ f (b))) to get an estimator. The user has to give its function (with parameters if required), the
integral bounds an a tolerance factor (10−6 if not given):

Real i n t f = adaptiveTrapz (f , 0 , 1) ; / / int_ [0 , 1] f (t) dt with 1E−6 as tolerance
Parameters pa (2 , "p") ;
Complex i n t f p = adaptiveTrapz (fp , pa , 0 , 1 , 1E−4) ; / / using parameters and a tolerance

Because at the first step, the adaptive method uses 5 points uniformly distributed, the result may
be surprising if unfortunately the function takes the same value at these points!

Discrete fast Fourier transform (FFT)

XLIFE++ provides the standard 1D discrete fast Fourier transform with 2n values:

gk = ∑
j=0,n−1

f j e−2iπ j k
n .

FFT and inverse FFT are computed using some functions addressing real or complex vectors of size 2n :

Number ln =6 , n=64;
Vector<Complex> f (n) , g (n) , f2 (n) ;
for (Number i =0; i <n ; i ++) f [i]= std : : sin (2* i * pi_ /(n−1)) ;
f f t (f , g) ; i f f t (g , f2) ; / / f2 should be c l o s e to f
/ / or
Vector<Complex> fhat= f f t (f) , f i h a t = i f f t (f) ;

If the vector you give is not of 2n length, fft/ifft computation will use only the first 2n values with
2n the greater value less than the vector size. Remember that even the input vector is a real vector

the output is always a complex vector.

Advanced users can also use some functions fft/ifft addressing iterators that can handle any collection of
real or complex values. See the dev documentation.

Filon’s method for oscillatory integrals

Up to now, only one method is provided to compute 1D oscillatory integrals based on the Filon’s method. It is
designed to compute an approximation of the following oscillatory integral:

I (x) =
∫ T

0
f (t)e−i xt

where f is a slowly varying function with real or complex values.

Considering a uniform grid tn = n d t , ∀n = 0, N and an interpolation space on this grid, say vect (wn)n=0,N

where wn are polynomial on each segment [tn−1, tn]; the Filon’s method consists in interpolating the function
f :

f (t) = ∑
n=1,N

an wn(t).

Substituting f by its interpolation in integral and collecting terms in a particular way, the integral I (x) is thus
approximated as follows:

IN (x) = d t
∑

j=1,p
C j (x)

∑
n=1,N

f (t j
n)exp−i xtn−1 +d t 2

∑
j=1,p

C ′
j (x)

∑
n=1,N

f ′(t j
n)exp−i xtn−1

178

where C j (x) and C ′
j are coefficients of the form

∫ 1
0 τ j (s)exp−i x s d t d s with τ j some shape functions on the the

segment [0,1] ant t j
n the support of the j th dof on the segment [tn−1, tn]. The second sum in IN appears only

when using Hermite interpolation; for Lagrange interpolation, C ′
j (x) = 0.

The FilonIM class provides mainly two constructors that pre-compute the values of f and f ′, a function that
computes the integral at x (may be a complex value). In constructors the ord_ corresponds to the interpolation
used : 0 for Lagrange P0, 1 for Lagrange P1 and 2 for Hermite P3, f and df (if Hermite Filon is used) are some
standard C++ functions of a real argument:

FilonIM (number_t ord , T(f) (Real) , r e a l _ t t f , number_t N)
FilonIM (number_t ord , T(f) (Real) , T(df) (r e a l _ t) , r e a l _ t t f , number_t N) ;
Complex compute(S& x) const ; / / compute I (x)
Complex operator () (S& x) const / / compute I (x)
void print (ostream& os) const ; / / print FilonIM on stream
} ;

This class is quite easy to use, for instance to compute the integral

I (x) =
∫ 10

0
e−t e−i xt

by the P1-Filon method, define first a C++ function returning the value of f as a Complex, create a FilonIM
object with your own parameters and finally call it passing a x value:

Complex f (Real x) { return Complex(exp(−x) , 0 .) ; }
. . .
FilonIM fim (0 , f , 10 , 100) ;
Complex y = fim (0 . 5) ;

To invoke Hermite P3 Filon method, define also the derivative of f :

Complex f (Real x) { return Complex(exp(−x) , 0 .) ; }
Complex df (Real x) { return Complex(−exp(−x) , 0 .) ; }
. . .
FilonIM fim (2 , f , df , 10 , 100) ;
Complex y = fim (0 . 5) ;

The P0 Filon method is of order 1, the P1 Filon is of order 2 while the Hermite P3 Filon is of order
4. The Hermite P3 Filon is less stable than the Lagrange Filon methods!

By default, FilonIM class is designed for complex value functions. In fact, this class is an alias of a template
class that supports also real value functions. To explicitely use the real version of FilonIM class, you have to
instantiate a FilonIMT<Real> object and pass to it some real value functions!

7.2.8 Define bilinear form involving unknowns on different meshes

It is possible to deal with a single integral involving unknowns on different meshes. Consider the following
XLIFE++ example:

Rectangle rect (_xmin =−1, _xmax = 1 , _ymin = −1 , _ymax = 1 , _hsteps =0.1 ,_domain_name = "Omega") ;
Mesh meshR(rect , _ t r i a n g l e) ;
Segment seg (_v1 =Point (− 2 . / 3 , 1 . / 3) , _v2=Point (2 . / 3 , 1 . / 3) , _hsteps =0.1 ,_domain_name = "Gamma") ;
Mesh meshS(seg , _segment) ;
Domain omega=meshR. domain("Omega") ;
Domain gamma=meshS . domain("Gamma") ;
Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u") , TestFunction v (u , "v") ;
Space S (_domain=gamma, _interpolation=P0 , _name="S") ;
Unknown p(S , "p") , TestFunction q(p , "qv") ;
BilinearForm a=intg (gamma, u*q) ;

179

The test function q is consistent with the domain gamma because q belongs to the FE space S defined from gamma
but u is not because gamma is not related to the space V. Nevertheless, XLIFE++ can deal with by constructing a
"ficticious" domain (named gamma_F_omega) made of elements of omega intersecting gamma.
It works also with two domains of same dimension:

Rectangle rect (_xmin =−1, _xmax = 1 , _ymin = −1 , _ymax = 1 , _hsteps =0.1 ,_domain_name = "Omega") ;
Mesh meshR(rect , _ t r i a n g l e) ;
Rectangle r e c t _ i (_xmin = −0.5 , _xmax = 0 . 5 , _ymin = −0.5 , _ymax = 0 . 5 , _hsteps =0.1 ,_domain_name =

"Omega_i") ;
Mesh meshRi (rect_int , _ t r i a n g l e) ;
Domain omega=meshR. domain("Omega") ;
Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u") ; TestFunction v (u , "v") ;
Domain omegai=meshRi . domain("Omega_i") ;
Space Vi (_domain=omegai , _interpolation=P1 , _name=" Vi ") ;
Unknown ui (Vi , " ui ") ; TestFunction v i (ui , " v i ") ;
BilinearForm ai =intg (omegai , u* v i) ;

7.2.9 Dealing with non standard bilinear form - advanced usage -

In some cases, the bilinear form you want to deal with, cannot be expressed using standard operators of
XLIFE++ or involved operations that are not yet available in XLIFE++. This section explains how to use the
UserBilinearForm class that handles bilinear form managing particular function doing the computation
of elementary matrices. For such bilinear form, the matrix computation algorithms bypass the quadrature
machinery used classically and call the function attached to UserBilinearForm object.

First of all, a function computing the elementary matrices have to be defined. It has the following prototype:

void blfFun (BlfDataComputation& blfd)
{ . . . }

where the BlfDataComputation class handles some informations related to the elements concerned by the
elementary matrix computation:

class BlfDataComputation
{ public :

const Element* elt_u , * e l t _ v ; / / never null pointer (FEM)
const Element* elt_u2 , * el t_v2 ; / / may be 0
const GeomElement* s i d e l t ; / / may be 0 (DG case)
RealMatrix * matel ; / / r e a l elementary matrix
ComplexMatrix* cmatel ; / / complex elementary matrix

}

elt_u, elt_v are pointers to some finite elements. They may be different if unknown space and test function
space are different or if it is a BEM bilinear form (double integral). elt_u2, elt_v2 are pointers to other finite
elements when more are involved. This is the case of discontinuous Galerkin computation on a side element
(sidelt) shared by elt_u and elt_u2. From elt you have access to the underlying GeomElement object that
handles the GeomMapData giving access to the geometric map from reference element to actual geometric
element; in particular the jacobian matrix, the inverse of jacobian matrix, the differential element can be
extracted from this object. The following simple example shows how to compute the elementary matrix related
to ∇u.∇v when using 2D P1 finite element:

void blfGradGrad (BlfDataComputation& blfd)
{ i f (blfd . matel==0) blfd . matel=new RealMatrix (1 , 1) ; / / a l l o c a t e i f not y e t al located

const Element* e l t =blfd . elt_u ;
i f (e l t ==0) return ; / / no computation

GeomMapData& md = * e l t −>geomElt_p−>meshElement () −>geomMapData_p ; / / access to geometric map
Real dx =0.5*md. dif ferentialElement ;
RealMatrix& invJ=md. inverseJacobianMatrix ;
RealMatrix C=dx* invJ * tran (invJ) ;

180

RealMatrix G(2 , 3 , 0 .) ;
G(1 , 1) =1;G(2 , 2) =1;G(1 , 3) = −1;G(2 , 3) = −1; / / gradient of 2D−P1 r e f e r e n c e shape functions

* blfd . matel=tran (G) *C*G;
}

Because of explicit using of pointers and references, be careful ! Other informations can be extracted from
element, see the developer documentation related to the Element class.

Once the function computing the elementary matrix is given, the user bilinear form can be defined:

Mesh ms(Rectangle (_xmin=0. ,_xmax=1. , _ymin=0. , _ymax=1. , _nnodes=10 ,_domain_name="Omega") ,
_tr iangle , 1 , _structured , _ a l t e r n a t e S p l i t) ;

Domain omega=ms. domain("Omega") ;
Space V(omega, Lagrange , 1 , "H") ;
Unknown u(V , "u") ; TestFunction v (u , "v") ;
bool invJ=true , nor= f a l s e ;
BilinearForm ublf=userBlf (omega, u , v , blfGradGrad , _FEComputation , _symmetric , invJ , nor) ;

The bilinear form is constructed using the userBlf function indicating

• the geometric domain concerned (may be two domains if a double integral),

• the unknown and test function involved,

• the function computing elementary matrices,

• the type of computation : _FEComputation,_IEComputation,_DGComputation,

• a symmetry property : _noSymmetry, _symmetric, ...,

• a boolean telling if the inverse of jacobian must be computed and a boolean telling if the normal vector
must be computed.

The user bilinear form can be used as other bilinear forms. For instance to compute the related matrix associated
to:

BilinearForm ublf=userBlf (omega, u , v , blfGradGrad , _FEComputation , _symmetric , invJ , nor) ;
TermMatrix K(ublf , "K") ;

Note that the matrix K related to the user bilinear form ublf is the same as that obtained using the standard
bilinear form intg(omega,grad(u)|grad(v)).

7.3 Essential conditions

Essential conditions are conditions that appear in spaces involved in variational problem. The most common
one is the Dirichlet condition on a boundary : u = 0 on Γ (homogeneous) or u = g on Γ (non homogeneous).
But there are others : transmission condition on a boundary, periodic condition between two boundaries, null
average on a domain, ... XLIFE++ provides a symbolic description of such conditions based on operator’s stuff
already described.

The general syntax of an essential condition is the following

(a1 ⊗ op1(u1))|D1 +/- (a2 ⊗ op2(u2))|D2 = f

where

• a1, a2 are some constants

• ⊗ is any algebraic operator (*, |, % , ^)

• op1, op2 are some operators on unknown

• u1, u2 are some unknowns

• D1, D2 are some domains

181

• f is a constant or a function

Some classic scalar expressions are :

u|D = 0 homogeneous Dirichlet condition

u|D = f non homogeneous Dirichlet condition

u1|D - u2|D = 0 homogeneous transmission condition

u|D1 - u|D2 = 0 homogeneous periodic condition

u|D1 - g * u|D2 = 0 quasi periodic condition (g function)

Obviously, syntax supports more than conditions that the program can really deal with !

As the operator priority rules are the C++ rules, omitted parenthesis may induce some hazardous
compilation errors. In doubt, use parenthesis.

To declare essential condition, users have to instanciate EssentialConditions object, which handles a set of
conditions:

Strings sn ("y=0" , "y=1" , "x=0" , "x=1") ;
Mesh mesh2d(Square (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=10 , _side_names=sn) , _tr iangle , 1 ,

_structured) ;
Domain omega=mesh2d . domain("Omega") ;
Domain sigmaM=mesh2d . domain("x=0") ;
Domain sigmaP=mesh2d . domain("x=1") ;
Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u") ;
EssentialConditions ecs = (u | sigmaM = 1) ;

or using a function:

Real un(const Point& P , Parameters& pa = defaultParameters)
{

return 1 . ;
}

EssentialConditions ecs = (u | sigmaM = un) ;

To concatenate conditions, use the operator & :

EssentialConditions ecs = (u | sigmaM = 1) & (u | sigmaP = 1) ;

It is possible to mix conditions. Here is a case with two unknowns related by a transmission condition:

. . .
Domain sigmaM=mesh2d . domain("x=0") ;
Domain sigmaP=mesh2d . domain("x=1") ;
Domain gamma=mesh2d . domain("x=1/2− or x=1/2+") ;
Space VM(_domain=omegaM, _interpolation=P2 , _name="VM") ;
Unknown uM(VM, "u−") ;
Space VP(_domain=omegaP, _interpolation=P2 , _name="VP") ;
Unknown uP(VP, "u+") ;
EssentialConditions ecs = (uM| sigmaM = 1) & (uP | sigmaP = 1)

& ((uM|gamma) − (uP |gamma) = 0) ;

To deal with periodic condition, the map related to the two domains involved is required:

182

Vector<Real> mapPM(const Point& P , Parameters& pa = defaultParameters)
{

Point Q(P) ;
Q(1) −=1;
return Q;

}
. . .

Domain omega=mesh2d . domain("Omega") ;
Domain sigmaM=mesh2d . domain("x=0") ;
Domain sigmaP=mesh2d . domain("x=1") ;
Domain gammaM=mesh2d . domain("y=0") ;
Domain gammaP=mesh2d . domain("y=1") ;
Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u") ;

defineMap (sigmaP , sigmaM, mapPM) ;
EssentialConditions ecs = (u |gammaM = 0) & (u |gammaP = 0)

& ((u | sigmaP) − (u | sigmaM) = 0) ;

XLIFE++ uses a very powerful process to deal with essential condition: all constraints are merged
in a unique linear constraints system which is reduced using a QR algorithm. This process is able to

detect redundant or conflicting constraints. When some are redundant, they are deleted. When some are in
conflict, they are also deleted but the right hand side related components are averaged. For instance, this
occurs when two Dirichlet conditions are not compatible at the intersection of two boundaries. In both
cases a warning message is handled. It is the responsability of user to check possible conflict.

Contrary to the mathematical point of view, in XLIFE++ the essential conditions are NOT attached
to spaces but to algebraic representation of bilinear forms (see next section). This choice avoid to

define multiple spaces.

Advanced usage

Most of essential conditions (except moment condition) are expressed as punctual relations. More precisely,
the symbolic expression op(u)|D is translated as

op(u)(Mi) =∑
j

u j op(w j)(Mi), for some points Mi ∈ D.

When using a Lagrange approximation, points Mi are simply the support of the Lagrange dofs belonging to the
domain D . When non Lagrange element are concerned, virtual point supports, often defined in the reference
element, are used. If there is no virtual point support, mesh nodes of the domain are used.
Using points that are shared by two elements (vertices for instance) may cause some troubles when operator or
approximation involved is not continuous across element. To bypass this difficulty, it is possible to use internal
points of elements instead of boundary points by modifying the property ecMethod of the essential condition:

EssentialCondition ec = (ncross (u) |gamma = 0) ;
ec . ecMethod = _internalNodeEC ;
EssentialConditions ecs = ec ;

Be cautious, do not confuse EssentialCondition dealing with one condition and EssentialConditions
dealing with several conditions.

Using internal nodes generates more punctual relations than using dof points, but the reduction process deals
with very well.

183

8 Solving the problem

Now, from the previous symbolic representation, we go to the algebraic representation of the problem, that is to
say the representation of the problem in terms of matrices and vectors.

8.1 Algebraic representation

The algebraic representation consists in representation in terms of vectors and matrices of linear and bilinear
forms, say :

Li = l (τi) and Ai j = a(w j ,τi)

where (w j) j=1,n and (τi)i=1,m are respectively the basis of finite space V (unknown space) and W (test function
space).

XLIFE++ provides two fundamental classes to deal with such vectors and matrices:

• TermVector class which handles vector and space stuff (linear form, unknowns, dof numbering, ...)

• TermMatrix class which handles matrix and spaces stuff (bilinear form, unknowns, dof numbering, ...)

These two classes support either single unknown or multiple unknowns representation. Multiple unknowns
vector or matrix are represented by single unknown blocks:

L =
 Lv1

Lv2

...

 and A =
 Av1 u1 Av1 u2

Av2 u1 Av1 u2

...


where u1, u2 stands for unknowns and v1, v2 stands for test functions.

Unknowns correspond to matrix columns and test functions to matrix rows!

8.1.1 Representing linear and bilinear forms

The algebraic representation of a linear form or a bilinear form is simply done by specifying forms in TermVector
or TermMatrix:

Mesh mesh2d(Square (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=20) , _tr iangle , 1 , _structured) ;
Domain omega=mesh2d . domain("Omega") ;
Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u") ;
TestFunction v (u , "v") ;

LinearForm fv=intg (omega, f * v) ;
TermVector F(fv , "F") ;

BilinearForm auv=intg (omega, grad (u) | grad (v)) ;
TermMatrix A(auv , "A") ;

184

Naming them using a string is more convenient for printing purpose.

For multiple unknowns forms, the syntax is the same:

. . .
Domain omega1=mesh2d . domain("Omega1") ; Domain omega2=mesh2d . domain("Omega2") ;
Space V1(_domain=omega1 , _interpolation=P1 , _name="V1") , V2(_domain=omega2 , _interpolation=P1 ,

_name="V2") ;
Unknown u1 (V1 , "u1") ; Unknown u2 (V2 , "u2") ;
TestFunction v1 (u1 , "v1") ; TestFunction v2 (u2 , "v2") ;

LinearForm fv = intg (omega1 , f * v1) + intg (omega2 , f * v2) ;
TermVector F(fv , "F") ;

BilinearForm auv=intg (omega1 , grad (u1) | grad (v1)) +intg (omega2 , grad (u2) | grad (v2)) ;
TermMatrix A(auv , "A") ;

As previously mentioned, essential conditions are not attached, neither to space nor to bilinear form, but
directly to TermMatrix. You have to specify them when you construct a TermMatrix from bilinear form:

BilinearForm auv=intg (omega, grad (u) | grad (v)) ;
EssentialConditions ecs= (u | sigmaM = 1) & (u | sigmaP = 1) ;
TermMatrix A(auv , ecs , "A") ;

Essential conditions are never attached to a TermVector! When solving a system involving essen-
tial conditions, the TermVector representing the right hand side of the system is automatically

corrected to take into account essential conditions effects.

When defined, TermVector and TermMatrix are automatically computed, except if the option _notCompute is
set in definition of TermMatrix or TermVector.

The computation algorithms find the minimal representation of matrices. It means that the size of
matrix is equal to the number of unknown dofs (and test function dofs) involved in the computation.

For instance, a mass matrix on a boundary involve only dofs supported by the boundary.

The value type of matrix (real or complex) is managed by TermMatrix and TermVector. The user
has not to deal with that, except in an advanced usage.

Definition of TermMatrix or TermVector supports some optional arguments to be inserted in any order before
the optional name argument:

TermMatrix(bf,[ecs_u],[ecs_v],[option],[option], ..., [name])

where bf is the bilinear form, ecs_u and ecs_v possible essential conditions, and option any of

• _compute, _notCompute : to manage the automatic computation of the TermMatrix

• _assembled, _unassembled : to manage the automatic assembling of the matrix; not assembled implies
not computed

• _nonSymmetricMatrix, _symmetricMatrix, _selfAdjointMatrix, _skewSymmetricMatrix, _skewAdjointMa-
trix : to enforce symetry property when bilinear form has such symetry and XLIFE++ has not detected
it.

• _csRowStorage, _csColStorage, _csDualStorage, _csSymStorage, _denseRowStorage, _denseColStorage,
_denseDualStorage, _skylineSymStorage, _skylineDualStorage : to enforce the storage if the default one
chosen by XLIFE++ is not well suited

185

• _pseudoReductionMethod, _realReductionMethod, _penalizationReductionMethod : to indicate the
method to deal with essential condition.

8.1.2 Dealing with essential conditions

Up to now, only pseudo reduction method is available for any essential condition and penalization method for
Dirichlet condition. If necessary, it is possible to change the diagonal coefficient (by default 1) of the pseudo
eliminated block matrix by invoking the ReductionMethod object:

BilinearForm auv=intg (omega, grad (u) | grad (v)) ;
EssentialConditions ecs= (u | sigmaM = 0) ;
TermMatrix A(auv , ecs , ReductionMethod (_pseudoReduction , 1 0 .) , "A") ;

To use the penalization method, change the method in the ReductionMethod object:

BilinearForm auv=intg (omega, grad (u) | grad (v)) ;
EssentialConditions ecs= (u | sigmaM = 0) ;
TermMatrix A(auv , ecs , ReductionMethod (_penalizationReduction , 1 0 0 0 0 .) , "A") ;

The penalization method adds α to the diagonal coefficients related to dofs where the Dirichlet conditions act.

Dealing with eigen problems

When dealing with eigen problems be very cautious when there are some essential conditions. Up to now,
only the pseudo-reduction method is available to take into account some essential conditions. Just recall that
essential conditions are expressed in terms of a linear constraints system which is reduced to a minimal form
using a QR factorization, say

Ue = ge +C ∗Ur

where e stands for ne eliminated dofs, r for nr reduced dofs and M is a ne ×nr matrix.
The pseudo-reduction of a matrix, say A, consists in using the previous constraints system for all rows cor-
responding to reduced dofs and replacing rows corresponding to eliminated dofs by the constraints system,
possibly scaled by a factor α. After reduction, the matrix formally looks like[

αI αC

0 Ar r

]
When C is a null matrix (Dirichlet condition for instance), the eigen vectors are well computed but may be
spoiled by the artificial part added to recover constraints. For instance, if the smallest eigen values are required,
you can shift these artificial eigen values by choosing the scale factor α large enough :

. . .
BilinearForm auv=intg (omega, grad (u) | grad (v))) ;
BilinearForm uv=intg (omega, u* v)) ;
EssentialConditions ecs = (u |Gamma=0) ;
TermMatrix A(auv , ecs , ReductionMethod (_pseudoReduction , 1 0 0 0 .)) ;
TermMatrix M(uv , ecs) ; / / not scaled !
EigenElements eigs (A ,M, _nev=10 , "SM") ;

When C is not a null matrix (case of transmission or periodic condition for instance), the previous reduction is
no longer working. An other scaling parameter (β) is available in the ReductionMethod object. It corresponds
to the following generalized scaling : [

(α+β)I αC

0 Ar r

]
.

Now choosing α= 0, the matrix will be reduced to a correct matrix for searching eigen values[
βI 0
0 Ar r

]
.

186

. . .
BilinearForm auv=intg (omega, grad (u) | grad (v))) ;
BilinearForm uv=intg (omega, u* v)) ;
EssentialConditions ecs = (u |Gamma) −(u | Sigma) =0;
TermMatrix A(auv , ecs , ReductionMethod (_pseudoReduction , 0 . , 1 0 0 0 .)) ;
TermMatrix M(uv , ecs , ReductionMethod (_pseudoReduction , 0 . , 1)) ;
EigenElements eigs (A ,M, _nev=10 , "SM") ;

Although the eigen system has been "reduced" by "eliminating" some dofs, the eigen vectors well satisfy
the essential conditions because the applyEssentialConditions function has been automatically called to
recover the essential conditions.

8.1.3 Delay computation

If you choose to declare the TermMatrix with the _notCompute option, its computation may be done later using
the compute command:

. . .
BilinearForm auv=intg (omega, grad (u) | grad (v))) ;
TermMatrix A(auv , _notCompute , "A") ;
. . .

compute(A) ;

TermMatrix and TermVector manages some additional parameters and a lot of facilities are provided. Let us
go to details.

8.1.4 TermVector in details

TermVector represents either a linear form on discrete space or any element of space as vector of components
on the space basis.

It has a default constructor and one from linear form with options:

TermVector (name) ;
TermVector (LinearForm , opt1 , opt2 , opt3 , name) ;

opt1, opt2, opt3, name are optional arguments:

Reals f (const Point& P , Parameters& pa = defaultParameters)
{ return Reals (2 , − 1 .) ; }
. . .
Strings sn (4 , " ") ;
. . .

Mesh mesh2d(Square (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=4 , _side_names=sn) ,
_tr iangle , 1 , _structured) ;

Domain omega=mesh2d . domain("Omega") ;
Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u" , 2) ; TestFunction v (u , "v") ;
LinearForm fv=intg (omega, f | v) ;

TermVector B(fv , "B") ;

In the previous example, the TermVector B is derived from a linear form defined on a vector test function.

The constructors of TermVector from linear forms compute automatically the algebraic representation except
if the option _notCompute is specified. In that case, the TermVector object may be computed later using the
compute function:

187

Reals f (const Point& P , Parameters& pa = defaultParameters)
{ return Reals (2 , − 1 .) ; }
. . .
Strings sn (4 , " ") ;
Mesh mesh2d(Square (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=4 ,
_side_names=sn) , _tr iangle , 1 , _structured) ;
Domain omega=mesh2d . domain("Omega") ;
Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u" , 2) ;
TestFunction v (u , "v") ;
LinearForm fv=intg (omega, f | v) ;
TermVector B(fv , _notCompute , "B") ; / / do not compute B
. . .

compute(B) ; / / now compute B

If a TermVector object is already computed, the compute function does not re-compute it! If you
want to re-compute it, you have to change its computation status :

B . computed () = f a l s e ;

A TermVector may be constructed from values of a function f on a geometric domain. It is available only for
FE Lagrange unknown: the vector is built with components f (Mi) for any node Mi in the domain:

TermVector (Unknown, GeomDomain, T , String name)

The T argument may be a function (C++ function,Function object or SymbolicFunction object) or a constant
value:

Reals f (const Point& P , Parameters& pa = defaultParameters)
{ return P ; }
. . .
Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u" , 2) ; / / vector unknown
TermVector B(u , omega, f , "B") ; / / from C++ function
Unknown v (V , "v") ; / / scal ar unknown
TermVector F(v , omega, x_1 * x_2 , "F") ; / / from SymbolicFunction
TermVector G(v , omega, 1 . , "G") ; / / from constant

For non Lagrange interpolation, there exits a extended TermVector constructor from a function f and its
derivative functions if required that is

π f =∑
i

di (f)wi

where (di)i are the degrees of freedom (viewed as distributions) and (wi)i the related shape functions. It works
as follows :

Real f x (const Point& P , Parameters& pa = defaultParameters) { return P(1) ; }
Vector<Real> gx (const Point& P , Parameters& pa = defaultParameters)
{ Vector<Real> g (2 , 0 .) ; g (1) = 1 . ; return g ; }
Vector<Real> g2x (const Point& P , Parameters& pa = defaultParameters)
{ return { Vector<Real> g (3 , 0 .) ; }
. . .

TermVector ux (u , omega, Function (f x) , Function ()) ; / / order 0 dofs
TermVector vx (u , omega, Function (f x) , Function (gx)) ; / / order 0/1 dofs involved
TermVector wx(u , omega, Function (f x) Function (gx) , Function (hx)) ; / / order 0 / 1 / 2 dofs involved

Passing first order derivatives of f , say (∂x f ,∂y f , [∂z f]) as a vector is mandatory for interpolation involv-
ing dof with first order derivatives (e.g Morley element) and passing second order derivatives of f , say
(∂xx f ,∂y y f ,∂x y f , [∂zz f ,∂xz f ,∂y z f]) as a vector is only mandatory for interpolation involving dof with sec-
ond order derivatives (e.g Argyris element). For a Lagarange interpolation, this constructor produces the

188

same TermVector as the constructor TermVector F(v, omega,Function(fx)). It is also working for vector
unknowns; in that case derivatives must be given as a unique vector collecting all the derivatives for each
component (∂x f1,∂y f1, [∂z f1],∂x f2,∂y f2, [∂z f2], . . .).

Do not confuse the "nodal" TermVector constructor (f (Mi)) with the "dof" TermVector constructor
(di (f)) that coincide in case of Lagrange dofs. In case of non Lagrange dofs, use the "dof" TermVector

constructor without omitting the derivative function, even a void one if it is not required! For instance, for
Nedelec elements :

Vector<Real> fE (const Point& P , Parameters& pa = defaultParameters) { return P ; }
. . .
Space V(_domain=omega, _interpolation=NE1_1 , _name="V" , _notOptimizeNumbering) ; / / Nedelec

elements space
Unknown e (V , "e") ;
TermVector ex (e , omega, Function (fE) , Function ()) ;

There are also a copy constructor and a constructor assigning a constant value from an other TermVector:

TermVector (TermVector , name) ;
template <typename T> TermVector (TermVector , T , name) ;

TermVector can be constructed from one or two TermVector by applying a C++ function or a symbolic function.
C++ function has to be of the following forms:

Real fun (const Real& x1) ;
Real fun (const Real& x1 , const Real& x2) ;
Complex fun (const Complex& x1) ;
Complex fun (const Complex& x1 , const Complex& x2) ;

For instance, to build a new TermVector that is the squared of an other one:

Real fsq (const Real& x1) { return x1 * x1 ; }
. . .

TermVector F(intg (omega, u* v)) ;
TermVector F2 (F , fsq) ; / / from C++ function
TermVector F2 (F , x_1 ^2) ; / / from symbolic function

Finally, by using algebraic operators + - * / ^ and standard mathematical function abs, real, imag, complex,
sqrt, squared, sin, cos, tan, sinh, cosh, tanh, exp, log, log10, . . . on TermVector’s, new TermVector may
also be constructed:

TermVector F(intg (omega, u* v)) ;
TermVector G = sqrt (F) +abs (F) ;

It is possible to mix single unknown scalar TermVector and single unknown vector TermVector
in some operations but only one single unknown vector TermVector is allowed. In that case, the

result is a single unknown vector TermVector where the operation has been performed on each component
of the input single unknown vector TermVector. For instance if X is a single unknown scalar TermVector
and Y a single unknown vector TermVector, you can do

TermVector Z= X*X*Y ;

but not

TermVector Z= X*Y*Y ;

When many TermVector’s are involved, they have to be of the same size!

189

Concatenate some scalar TermVector’s into a one vector TermVector is also possible by using the following
construction process:

Space V(_domain=omega, _interpolation=P1 , _name="V") ; / / P1 Lagrange space
Unknown u(V , "V") ; / / scal ar unknown
TermVector V1(u , omega , 1 .) ; / / a sc al ar TermVector (1 , 1 , . . .)
TermVector V2(u , omega , 2 .) ; / / an other scalar TermVector (2 , 2 , . . .)
Unknown u2 (V , "V" , 2) ; / / vector unknown
TermVector W(u2 , V1 , V2) ; / / vector TermVector ([1 , 2] , [1 , 2] , . . .)

This process works only for single unknown TermVector.

In case of a multiple unknowns vector, a unknown block may be extracted as follows:

Space V(_domain=omega, _interpolation=P1 , _name="V") , H(_domain=omega, _interpolation=P0 ,
_name="V") ;

Unknown u(V , "u" , 2) , p(W, "p") ;
LinearForm fv=intg (omega, f | u) +intg (omega, p) ;
TermVector B(fv) ;
TermVector B_u=B(u) ; / / e x t r a c t u part

Unknown is used as index and the returned TermVector is a copy of the extracted block.

It is possible to do algebraic operations (+=, -=, *=, /=, +, -, *, /) on TermVector:

. . .
Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u") ;
LinearForm fvo=intg (omega, f *u) ;
LinearForm f s v =intg (sigma , g*u) ;
TermVector Bo(fvo , "Bo") ;
TermVector Bs (fvs , "Bs") ;
TermVector B=2*Bo+3*Bs ;

If TermVector’s have not been computed, the operations have no effect!

In order to be more efficient, the linear combination of TermVector’s is delayed up to the assign
(=) operation or a constructor operation. It means that some expression may not be evaluated and

produce warning/error message related to LcTerm class.

. . .
TermVector W=U+V ; / / Ok
theCout << U+V ; / / NOT EVALUATED

Besides, it is possible to convert TermVector:

. . .
Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u") ;
LinearForm fv=intg (omega, f *u) ;
TermVector B(fv , "B") ;

B . toAbs () ;
B . toReal () ;
B . toImag () ;
B . toComplex () ;

Be cautious, once it is converted it is not possible to go back.

190

In some circumstances, it may be useful to restrict a TermVector to a smaller domain. Use the member function
onDomain or the operator |:

. . .
Space V(_domain=omega, _interpolation=P1 , _name="V") ; Unknown u(V , "u") ;
TermVector B(u , omega, x_1) ; / / TermVector on omega
TermVector Bg = B .onDomain(gamma) ; / / TermVector on gamma, boundary of omega
TermVector Bg = B |gamma; / / same

The merging of two TermVector living on different domains of a same mesh is also available:

. . .
TermVector B1(u , omega1 , x_1) ; / / TermVector on omega1
TermVector B2(u , omega2 , x_1) ; / / TermVector on omega2
TermVector B=merge(B1 , B2) ; / / merging

On dofs shared by the two domains, the merged value is those of the first domain. This behaviour
is different from the addition of two TermVector living on different domains where the value of

shared dofs is the sum of the values.

Inner/hermitian product and standard norms are provided:

Complex innerProduct (TermVector , TermVector) ;
Complex hermitianProduct (TermVector , TermVector) ;
Complex operator | (TermVector , TermVector) ;

Real norm(TermVector , Number l =2) ;
Real norm1(TermVector) ;
Real norm2(TermVector) ;
Real norminfty (TermVector) ;

Notice that inner and hermitian product return always a complex even if vectors are real!

Some general informations may be retrieved, using the following member functions:

TV . valueType () / / value type (_real or _complex)
TV . s i z e () / / s i z e counted in scalar
TV . nbDofs () / / s i z e counted in dofs
TV . nbDofs (u) / / number of dofs r e l a t e d to unknown u

Some member functions give useful access to part of a TermVector object:

TermVector U=TV(u) ; / / access to u part as a TermVector
Reals V ; TV . asVector (V) ; / / r e i n t e r p r e t TermVector as a raw Vector
TermVector W=TV .onDomain(Sigma) ; / / r e s t r i c t to domain Sigma
W=TV | Sigma ; / / r e s t r i c t to domain Sigma
Value val=TV . getValue (u , n) ; / / access to n−th component of unknown u (n>=1)
TV . setValue (u , n , 3 .) ; / / s e t value of n−th component of unknown u
TV . setValue (Sigma , 0 .) ; / / s e t to 0 the values on Sigma
Value val=TV . evaluate (u , P) ; / / evaluate at point P
Real v ;
TV(P , v) ; / / evaluate at point P
TV(u , P , v) ; / / evaluate at point P , s p e c i f y i n g unknown

Finally, a TermVector may be printed or saved into a file:

. . .
LinearForm fv=intg (omega, f *u) ;
TermVector B(fv , "B") ;

theCout << " vector B " << B ;
B . print (cout) ;
saveToFile (" f i l e . dat " ,B, _vtk) ;

191

In this example, B is saved to a file in vtk format (format of paraview software). Other available formats are _vtu
(paraview xml format) and _raw (only values are saved);

Summary of main TermVector operations

A function marked ⋄ means that its usage is restricted to single unknown TermVector.

Constructors
TermVector(LinearForm[, EssentialCondition][, option][, option]...[, name]) -> TermVector
TermVector(Unknown, Domain, value[, name])⋄ -> TermVector
TermVector(Unknown, Domain, Function[, name]) -> TermVector
TermVector(Unknown, Domain, Function, Function [,Function][, name]) -> TermVector
TermVector(Unknown, Domain, SymbolicFunction[, name])⋄ -> TermVector
TermVector(Unknown, Domain, VariableName[, name])⋄ -> TermVector
TermVector(TermVector, value[, name])⋄ -> TermVector
TermVector(TermVector[, TermVector], Function[, name])⋄ -> TermVector
TermVector(TermVector[, TermVector], SymbolicFunction[, name])⋄ -> TermVector
TermVector(Unknown, TermVector[, TermVector][, name])⋄ -> TermVector

Accessors
TermVector.name() -> String
TermVector.valueType() -> ValueType
TermVector.size() counted in scalar -> Number
TermVector.nbdofs() counted in dofs -> Number
TermVector.numberOfUnknowns() -> Number
TermVector.asRealVector() ⋄ -> RealVector
TermVector.asComplexVector() ⋄ -> ComplexVector
TermVector.Dof(Unknown, number) -> Dof
TermVector(Unknown) -> TermVector

Modifiers
TermVector.compute()
TermVector.toAbs()/ toReal()/ toImag()/ toComplex() -> TermVector
TermVector.setUnknown(Unknown) ⋄

Operations
[scalar][*]TermVector[+-][scalar][*]TermVector... -> TermVector
TermVector*TermVector component product ⋄ -> TermVector
TermVector/TermVector component division ⋄ -> TermVector
TermVector^p component exponent ⋄ -> TermVector
abs/real/imag (TermVector) -> TermVector
sqrt/squared (TermVector) ⋄ -> TermVector
sin/cos/tan/sinh/cosh/tanh (TermVector) ⋄ -> TermVector
asin/acos/atan/asinh/acosh/atanh (TermVector) ⋄ -> TermVector
exp/log/log10 (TermVector) ⋄ -> TermVector
norm/norm1/norm2/norminfty (TermVector) -> Real
innerProduct/hermitianProduct(TermVector,TermVector) -> Complex
TermVector|TermVector -> Complex

192

Value management
TermVector.getValue(Unknown, number) -> Value
TermVector.setValue(Unknown, number, val)
TermVector.setValue(number, val) ⋄
TermVector.setValue(Unknown, Domain, T)
TermVector.setValue(Domain, T) ⋄
TermVector.setValue(Unknown, Domain, Function)
TermVector.setValue(Domain, Function) ⋄
TermVector.setValue(Unknown, Domain, TermVector)
TermVector.setValue(Domain, TermVector) ⋄
TermVector.evaluate(Unknown, Point) -> Value
TermVector.evaluate(Point) ⋄ -> Value
TermVector(Unknown, Point, T) -> T
TermVector(Point, T) ⋄ -> T

Domain operations
TermVector.mapTo(GeomDomain, Unknown,[errOutDom] -> TermVector
merge(TermVector, TermVector) -> TermVector
TermVector|Domain -> TermVector
normalsOn(GeomDomain, Unknown) -> TermVector
setColor(GeomDomain, TermVector, ColoringRule)

Output
ostream << TermVector
TermVector.print([ostream])
saveToFile(FileName, TermVector, [termVector], [IOFormat], [withDomains])
plot(TermVector, [IOFormat])

8.1.5 TermMatrix in details

TermMatrix is the algebraic representation of a bilinear form, say a matrix. It supports different types of storage
and possibly, has to take into account essential conditions. So there are different constructors of TermMatrix
from bilinear forms:

/ / no e s s e n t i a l condition
TermMatrix (BilinearForm , opt1 , opt2 , opt3 , name) ;
/ / same e s s e n t i a l condition on unknown and t e s t function
TermMatrix (BilinearForm , EssentialConditions , opt1 , opt2 , opt3 , name) ;
/ / d i f f r e n e t e s s e n t i a l conditions on unknown and t e s t function
TermMatrix (BilinearForm , EssentialConditions , EssentialConditions , opt1 , opt2 , opt3 , name) ;

opt1, opt2, opt3 are any options picked in the list

• _compute, _notCompute, _assembled, _unassembled

• _nonSymmetricMatrix, _symmetricMatrix, _selfAdjointMatrix, _skewSymmetricMatrix, _skewAdjointMa-
trix

• _csRowStorage, _csColStorage, _csDualStorage, _csSymStorage, _denseRowStorage, _denseColStorage,
_denseDualStorage, _skylineSymStorage, _skylineDualStorage

• _pseudoReductionMethod, _realReductionMethod, _penalizationReductionMethod

and name is an optional string used for printing purpose.

Some examples of TermMatrix construction:

Strings sidenames ("y=0" , "y=1" , "x=0" , "x=1") ;
Square sq (_origin=Point (0 . , 0 .) , _length =1 , _nnodes=20 , _side_names=sidenames) ;
Mesh mesh2d(sq , _tr iangle , 1 , _structured) ;

193

Domain omega=mesh2d . domain("Omega") , gamma=mesh2d . domain("x=0") ;
Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u") ; TestFunction v (u , "v") ;
BilinearForm auv=intg (omega, grad (u) | grad (v)) , muv=intg (omega, u* v) ;

TermMatrix A(auv) ; / / s implest constructor
EssentialConditions ecs= (u |gamma = 0) ;
TermMatrix A0(auv , ecs , "A0") ; / / with e s s . condition and naming
TermMatrix M(muv, _notCompute) ; / / defined but not computed

The computation algorithm chooses the well adapted matrix storage, generally compressed sparse storage or
dense storage, taking into account symetry property of the matrix. Using option, the storage method may be
imposed at construction :

BilinearForm auv=intg (omega, grad (u) | grad (v)) ;
TermMatrix A(auv , ecs , _skylineSymStorage , "A") ;

The available matrix storage are:

• the compressed sparse storage _cs, generally the best one in terms of memory size

• the skyline storage _skyline, required by direct solvers

• the dense storage _dense

Each of these storages have different internal storages (say access) : _row, _col, _dual, _sym.

The storage may be changed after computation by using the setStorage function. Be cautious, some
storage conversions may be time expansive.

It is also possible to construct void matrix, copy of matrix, diagonal matrix from TermVector or standard vector
and matrix of the form G(Mi ,P j) where G is a kernel and Mi and P j belongs to some geometrical domains:

TermMatrix (name) ;
TermMatrix (TermMatrix , name) ;
TermMatrix (TermVector , name) ;
TermMatrix (Unknown, Domain, Vector<T> , name) ;
TermMatrix (Unknown, Domain, Unknown, Domain, OperatorOnKernel , name) ;

For particular purpose, construction of TermMatrix from a real/complex scalar Matrix is available:

RealMatrix H(10 , _hilbertMatrix) ; / / standard matrix
TermMatrix A(H, " Hilb_10 ") ; / / converted to a TermMatrix

Note that the TermMatrix involves abstract unknowns named #u_n and #v_mwhere m,n is the size of the matrix.

In case of multiple unknowns bilinear form, block matrix may be extracted using unknowns as index:

. . .
BilinearForm auv=intg (omega1 , grad (u1) | grad (v1)) +intg (omega2 , grad (u2) | grad (v2)) ;
TermMatrix A(auv) ;
TermMatrix A11=A(u1 , v1) ;

The TermMatrix result is a copy of the extracted block!

Users can print the matrix and its storage, and save it to file in dense (_dense) or coordinate format (_coo). The
coordinate format (i , j ,val) is well adapted to export sparse matrix to Matlab.

. . .
BilinearForm auv=intg (omega1 , grad (u1) | grad (v1)) +intg (omega2 , grad (u2) | grad (v2)) ;
TermMatrix A(auv , "A") ;

194

verboseLevel (30) ;
A . print (out) ;
out<<A ;
A . viewStorage (out) ;
A . saveToFile ("matA . dat " , _coo) ;

As matrices are memory consuming, it is possible at any time to deallocate the memory allocated by a matrix:

BilinearForm auv=intg (omega, grad (u) | grad (v)) ;
BilinearForm muv=intg (omega, u* v) ;
TermMatrix A(auv , "A") , M(muv, "M") ;
. . .
clear (A ,M) ;

Only memory used to store matrix values is deallocated. It means that clear has no effect on a matrix that has
not be computed !

TermMatrixs may be combined using standard algebraic operators (+=, -=, *=, /=, +, -, *, /)

BilinearForm kuv=intg (omega, grad (u) | grad (v)) ,
muv=intg (omega, u* v) ,
mguv=intg (sigma , u* v) ;

TermMatrix K(kuv , "A") ,
M(muv, "M") ,
Mg(mguv, "Mg") ;

M*=3;
K+=M;
TermMatrix A=K−3*M+Mg;

The sum (resp. the difference) of TermMatrixs involves a complex algorithm : sum is done by unknown blocks
(nothing is done with a void block) and for each block, the common dofs numbering is searched, then the sum
is performed. This process may induce the construction of a new matrix storage. When combining more than
two matrices, it is better to write the summation in one step rather than in several steps.

Summing TermMatrixs is equivalent to sum bilinear forms in a new one and compute it :

BilinearForm auv=kuv−3*muv+mguv;
TermMatrix A(auv , "A") ;

Regarding memory consuming and time performance, this method is better.

Product of TermMatrix and TermVector are provided using the * operator:

TermMatrix A(auv , "A") ;
TermVector L (luv , "L") ;
TermVector AL=A*L ;

Matrix and vector must have compatible unknowns but some may be omitted (void blocks are ignored).

When test function is used to construct matrix and vector, this compatibility rule in product
TermMatrix × TermVector implies that the matrix column unknowns should be the same as vector

unknowns. This rule may be too boring. It is the reason why a permissive behaviour is allowed : TermVector
unknowns may be the dual unknowns of test functions, in other words the matrix row unknowns. It requires
that test functions are declared as dual of unknowns !

To conclude this section we give the example of the Helmholtz problem in waveguide using Dirichlet to Neuman
map as transparent boundary condition. This exemple illustrates multiple uses of algebraic operators on
TermMatrix .

. . .
/ / define s p e c t r a l space to deal with DtN

195

Number N=10;
Space Sp(_domain=sigmaP , _basis=Function (cosny , params) , _dim=N, _name="cos (n* pi * y) ") ;
Unknown phiP (Sp , "phiP") ;
Complexes lambda(N) ;
for (Number n=0; n<N; n++) lambda [n]= sqrt (Complex(k*k−n*n* pi * pi /(h*h))) ;
/ / define TermMatrix with no DtN
BilinearForm auv=intg (omega, grad (u) | grad (v)) − k*k* intg (omega, u* v) ;
TermMatrix A(auv , _csDualStorage , "A") ;
/ / contruct DtN TermMatrix using matrix product
BilinearForm euv=intg (sigmaP , phiP * v) ,

fuv=intg (sigmaP , u* phiP) ;
TermMatrix E(euv , "E") , F(fuv , "F") ;
TermMatrix L (phiP , sigmaP , lambda , "L") ; / / diagonal matrix
TermMatrix ELF=E*L*F ;
TermMatrix A2=A− i *ELF ;

This DtN approach using product of matrices was the MELINA approach. In XLIFE++ it is better to use
TensorKernel approach :

. . .
Number N=10;
Space Sp(_domain=sigmaP , _basis=Function (cosny , params) , _dim=N, _name="cos (n* pi * y) ") ;
Unknown phiP (Sp , "phiP") ;
Complexes lambda(N) ;
for (Number n=0; n<N; n++) lambda [n]= sqrt (Complex(k*k−n*n* pi * pi /(h*h))) ;
TensorKernel tkp (phiP , lambda) ;
BilinearForm auv = intg (omega, grad (u) | grad (v)) − k*k* intg (omega, u* v)

− i * intg (sigmaP , sigmaP , u* tkp * v) ;
TermMatrix A(auv , "A") ;

Advanced usage

• When computing eigen values of a TermMatrix whith essential conditions that have been reduced using
the pseudo reduction method, you may be annoyed by spurious eigen values corresponding to the
residual diagonal block. These eigen values may be shifted by modifying the diagonal coefficient ot this
residual block:

. . .
EssentialConditions ecs = (u | sigma=0) ;
TermMatrix A(auv , ecs , ReductionMethod (_pseudoReduction , 1 0 0 .) "A") ; / / s h i f t by 100

• It may be useful to access to one particular coefficient of the TermMatrix and change it. For computed
TermMatrix that has not moved to its global representation, matrix coefficient can be accessed from either
its row and column numbers or its row and column dofs. If the TermMatrix is a multiple unknowns matrix,
pair of unknowns has to be specified. Let us give a simple example with single unknown TermMatrix:

. . .
Space V(_domain=omega, _interpolation=P1 , _name="V") ; Unknown u(V , "u") ; TestFunction v (u , "v") ;
TermMatrix M(intg (omega, u* v)) ;
Real m11 = M. getValue (1 , 1) . asReal () ; / / get M_11 as a r e a l

M. setValue (1 , 1 , 0 .) ; / / s e t M_11 to 0
M. setRow (1 , 2 , 0 .) ; / / s e t row 1 and row 2 to 0

Be care, the type of the given value has to be consistent with the type of the matrix coefficients !

• As the row or column numbers of the matrix are related to the dofs order of space or subspace, the matrix
coefficients can also be accessed using explicit dofs. In the following example where omega is assumed

196

to be the square unit, the dof nearest the point (0.5,0.5) is located and then used to access to the matrix
coefficient:

. . .
Space V(_domain=omega, −interpolation=P1 , _name="V") ; Unknown u(V , "u") ; TestFunction v (u , "v") ;
TermMatrix M(intg (omega, u* v)) ;
Dof d = V . locateDof (Point (0 . 5 , 0 . 5)) ;
Real mdd = M. getValue (d , d) . asReal () ; / / get M_dd as a r e a l

• Once TermMatrix is computed, unknows/testfunctions may be changed as long as the new unknown-
s/testfunctions are defined on the space of the original unknowns/testfunctions. Indeed numbering and
matrix coefficients are NOT recomputed.

Space V(_domain=omega, _interpolation=P1 , _name="V") ;
Unknown u(V , "u") ; TestFunction v (u , "v") ;
Unknown p(V , "p") ; TestFunction q(p , "q") ;
TermMatrix M(intg (omega, u* v)) ;
M. changeUnknown(p) ; / / u−>p
M. changeTestFunction (q) ; / / v−>q
M. changeUnknowns(p , q) ; / / u−>p , v−>q

There also exists a general changeUnknowns function that addresses multiple unknowns/testfunctions
TermMatrix, (u1,u2,...)→(p1,p2,...), (v1,v2,.)→(q1,q2,.):

A . changeUnknowns(Unknowns(u1 , u2 , .) ,Unknowns(v1 , v2 , .) , Unknowns(p1 , p2 , .) , Unknowns(q1 , q2 , .)) ;

8.1.6 HMatrix

In the context of integral equation, HMatrix method consists in using a hierarchical representation (tree) of the
BEM matrix, each tree node being either a real submatrix (leaf) or a virtual submatrix addressing up to four
nodes :

Figure 8.1: Hierarchical matrix

Then some sub-matrices may be "compressed" to save memory and time computation. The matrix may be not
squared and therefore the sub-matrices too.

The hierarchical structure of Hmatrix is based on clusters of row indices or column indices (in FE context,
clusters of dofs supported by mesh domains):

197

When building the tree structure of the HMatrix by a recursive division algorithm that travels the row and
column clusters, some a priori geometrical rules are used to know if a sub-matrix will be compressed later, say
admissible sub-matrix. When a sub-matrix is admissible, it is not divided. Up to now only the following boxes
rule is available :

Admissibility rule

A sub-matrix is admissible if the bounding box Br of the row cluster node and the bounding box Bc of the column
cluster node satisfy:

diam(Br) ≤ 2ηdist(Br ,Bc).

Default value of η is 1.

If a sub-matrix is admissible then it can be compressed using several methods. All the methods proposed try to
get a low rank approximation of the original sub-matrix of the form:

U D V ∗

where U is a m × r matrix, V is a n × r matrix and D is a r × r diagonal matrix. The rank of a such matrix is at
most r . So it is a low rank representation of a m ×n matrix if r is small compared to m, n.

The Singular Value Decomposition (SVD) gives an exact "approximation" of a m ×n matrix. So, from the
Eckart–Young–Mirsky theorem, approximate matrix of low rank can be produced by keeping a small number of
the largest singular values. Because, this approach requires a full SVD computation that is expansive, alternative
methods are based on random SVD which consists in capturing the matrix range using only few gaussian
random vectors and doing a SVD on a smaller matrix. Nevertheless, these approximate SVD methods still
require the full computation of the matrix, so adaptative cross approximation (ACA) methods computing only
some rows and columns of the matrix are faster but less robust.

The figure 8.2 shows an example of structure of a BEM HMatrix (2500×2500) computed by XLIFE++:

198

Figure 8.2: HMatrix with a sphere cluster, non admissible blocks are in red

How to involve HMatrix computation ?

By default, XLIFE++ build BEM matrix in dense storage. To involve HMatrix storage (and computation) XLIFE++
uses a special integration method in the bilinearform describing the BEM term : the HMatrixIM object that can
be handled as follows

HMatrixIM him(clmeth , minrow , mincol , hmapp, rank , im) ;

or

HMatrixIM him(clmeth , minrow , mincol , hmapp, eps , im) ;

where

• clmeth: the clustering method, one of _regularBisection, _boundingBoxBisection, _cardinalityBisection,
_uniformKdtree, _nonuniformKdtree

• minrow, mincol : the minimum size of sub-matrix, more precisely a sub-matrix is divided if it is not
admissible and if its number of rows/columns is greater than minrow/mincol

• hmapp: the approximate matrix methods, one of _noHMApproximation, _svdCompression, _rsvdCompression,
_r3svdCompression, _acaFull, _acaPartial, _acaPlus

• rank: the desired rank of approximate matrix

• eps: the desired precision of approximated matrix

• im: an integration method for double integral

The figure 8.3 illustrates the difference between clustering bisection methods with a disk mesh of 1673 points
and at most 10 points by box; different colors correspond to different tree node levels.

199

Figure 8.3: clustering of a disk mesh using regular (left), bounding box (middle), cardinality (right) bisection
methods.

and the figure 8.4 shows the cluster get when using the kdtree (quadtree in 2D) methods with at most 5 nodes
by box.

Figure 8.4: clustering of a disk mesh using kdtree methods - _uniformKdtree (left) and
_nonuniformKdtree(right).

When specifying _noHMApproximation all the sub-matrices (admissible and not admissible) are computed and
not compressed. There is no real advantage, except that the assembly appears to be faster than the standard
assembly in dense matrix, in particular when multi-threading is enable.
_svdCompression corresponds to some truncated svd either a rank truncature when rank is given or a eps
truncature (keep all singular values greater than eps).
_rsvdCompression uses random svd methods that are faster than full svd methods. As svd methods, user can
choose either a rank truncature or a eps truncature. _r3svdCompression is a more sophisticated random svd
that does only eps truncature; do not choose_r3svdCompression with a rank parameter!
_acaFull, _acaPartial, _acaPlus are adaptative cross approximation methods that use some rows and
columns of the matrix to build a low rank matrix. _acaFull method requires all the row and the columns of
the matrix, so it gives good approximates but it is not of a great interest compared to the random svd methods.
_acaPartial and _acaPlus (an improvement of _acaPartial) are more interesting because they use only
several rows and columns of matrix, saving time computation of BEM coefficients. But they are less robust!

The following XLIFE++ gives some examples of how to compute BEM HMatrix:

/ / mesh sphere and define domain , space , unknown
Mesh meshd(Sphere (_center=Point (0 . , 0 . , 0 .) , _radius =1. , _nnodes=9 ,

_domain_name="Omega") , _tr iangle , 1 , _subdiv) ;
Domain omega=meshd . domain("Omega") ;

200

Space W(_domain=omega, _interpolation=P0 , _name="V" , _notOptimizeNumbering) ;
Unknown u(W, "u") ; TestFunction v (u , "v") ;
/ / define kKernel , integration method and HMatrix parameters
Kernel G=Laplace3dKernel () ;
SauterSchwabIM ssim (5 , 5 , 4 , 3 , 2 . , 4 .) ;
HMatrixIM him(_cardinal i tyBisect ion , 20 , 20 , _acaplus ,0 .00001 , ssim) ;
/ / compute s i n g l e l a y e r matrix
BilinearForm a l f =intg (omega, omega, u* Gl *v , him) ;
TermMatrix A(a l f , "A") ;
/ / compute double double l a y e r matrix
BilinearForm b l f =intg (omega, omega, u* ndotgrad_y (G) *v , him) −0.5* intg (omega, u* v) ;
TermMatrix B(blf , "B") ;

Note that when adding a sparse FE matrix and a HMatrix, the result is a HMatrix. This is only possible if integrals
are supported by the same domain. Indeed, FE matrix addresses non admissible blocks of the HMatrix. Be care
when combining some matrices.

HMatrix integration method (HMatrixIM) is only available for double integral (BEM). Do not use
with a single integral bilinearform!

When building HMatrixIM object passing clustering parameters, the row and column clusters will
be computed when computing HMatrix, and referenced by your HMatrixIM object. As the row and

column clusters are not re-computed if they have been built, do not re-use your HMatrixIM object in a
bilinear form having an other domain support than this you have first involved. If you want re-use it on a
different domain, call the clear method that frees the row and column cluster:

. . .
HMatrixIM him(_cardinal i tyBisect ion , 20 , 20 , _acaplus ,0 .00001 , ssim) ;
BilinearForm a l f =intg (omega, omega, u* Gl *v , him) ;
TermMatrix A(a l f , "A") ; / / row and column c l u s t e r s are b u i l t
him . clear () ; / / d e a l l o c a t e s row and column c l u s t e r s

HMatrix does not work yet for problems with vector unknown!

The figure 8.5 and 8.6 give an idea of the efficiency of the aca+ and r3svd methods compared to the computations
done with a dense matrix.

201

Figure 8.5: assembly time for different HMatrix approximate methods

We note that the assembly computation time with Hmatrix and no approximation is better than the computation
time get with dense matrix. Is due to a better parallelization of HMatrix assembly. The ACA+ methods is
significantly faster than the other methods!

Figure 8.6: matrix/vector product time for different HMatrix approximate methods

HMatrix supports the matrix/vector product so it may be used with iterative methods but it is not
supported by direct linear solvers !

8.1.7 Projector

Sometimes, it may be useful to project an element of one FE space, say V to an other FE space, say W . XLIFE++
deals with projection based on a bilinear form, say a(., .), defined on both projection spaces. The projection

202

w ∈W of v ∈V is the solution of
a(w, w̃) = a(v, w̃) ∀w̃ ∈W.

Let (wi)i=1,n a basis of W and (vi)i=1,m a basis of V , the above problem is equivalent to the matrix problem:

AW =BV

where Ai j = a(w j , wi), Bi j = a(v j , wi), v = ∑
i=1,m Vi vi and w = ∑

i=1,n Wi wi . The bilinear form should be
symmetric and positive on the space W in order to the matrix A be invertible. The most simple example is the
L2 projection related to the bilinear form:

a(w, w̃) =
∫
Ω

w w̃ dΩ.

Projection operations are related to the Projector class. Let us see how to construct such Projector object :

Mesh mesh2d(Rectangle (_xmin=0 ,_xmax=1 ,_ymin=0 ,_ymax=1 ,_nnodes=6 ,
_side_names="Gamma") , _tr iangle , 1 , _structured) ;

Domain omega=mesh2d . domain("Omega") , gamma = mesh2d . domain("Gamma") ;
/ / c r e a t e some spaces
Space V1(_domain=omega, _interpolation=P1 , _name="V1" , _notOptimizeNumbering) ;
Unknown u1 (V1 , "u1") ; TestFunction v1 (u1 , "v1") ;
Space V2(_domain=omega, _interpolation=P2 , _name="V2" , _notOptimizeNumbering) ;
Unknown u2 (V2 , "u2") ;
Space N1(_domain=omega, _interpolation=NE1_1 , _name="N1" , _notOptimizeNumbering) ;
Unknown n1(N1, "n1") ; / / Nedelec FE
/ / c r e a t e some L2 p r o j e c t o r s
Projector P2toP1 (V2 , V1 , _L2Projector , "P2toP1") ;
Projector N1toP1 (N1, 1 , V1 , 2 , _L2Projector , "N1toP1") ;

Note the particular construction of the N1 to V1 × V1 projector. Because the space V1 × V1 does not exist, you
have to give the size of the vector unknowns (1 for N1, 2 for P1) related to spaces.
The projector types available are _L2Projector, _H1Projector, _H10Projector associated respectively to
the L2, H 1 and H 1

0 inner product. Be cautious, H 1 and H 1
0 projectors are not consistent with some FE spaces

(e.g. P0)! It is also possible to use your own bilinear form :

BilinearForm myblf=intg (gamma, u1* v1) +intg (omega, u1* v1) ;
Projector P1toP2 (V1 , V2 , myblf , "P1toP2") ;

It may happen that you want restrict your projection to a subdomain:

Projector P2toP1_Gamma(V2 , V2 ,gamma, _L2Projector , "P2toP1_Gamma") ;

When a Projector is constructed, the matrix A and B are computed and the matrix A is factorized. So you can
compute the projection of some TermVector’s:

TermVector B2(u2 , omega, fx2 , "B2") ; / / fx2 user function
TermVector B1=P2toP1 (B2 , u1) ;

By specifying the unknown u1 as second argument, the result B1 will have u1 as unknown. It is also possible to
omit the unknown argument or to pass the TermVector result as argument:

TermVector B1=P2toP1 (B2) ;
TermVector B1b ;
P2toP1 (B2 , B1b) ;

When no unknown is given, XLIFE++ will choose the first unknown that has been defined on result space.

You can also compute some standard projections without managing in a explicit way a Projector object:

TermVector B1=projection (B2 , V1) ;

203

In that case the Projector object is constructed in the back and kept in memory.

You can only project a single unknown TermVector. If your TermVector has multiple unknowns,
extract the part related to the unknown of interest before projection.

Sometimes, it may be interesting to build the matrixA−1B:

TermMatrix P21 = P2toP1 . asTermMatrix (u2 , u1 , "P21") ;

To save memory, the original matrices A and B are destroyed. Be careful, the matrix A−1B is a dense matrix
(column dense storage), so it may waste a lot of memory.

Finally, as almost objects of XLIFE++, you can print a Projector

P2toP1 . print (cout) ;
cout<<P2toP1 ;

8.2 Linear Solvers

After a problem is well-defined in the form of Term: TermMatrix and Vector, it can be easily solved with a
direct solver or with an iterative solver. XLIFE++ provides a wide set of linear equation solvers. The following
section explains some simple steps to make use of these solvers.

8.2.1 Direct solvers

Because direct solvers involve some complicated algorithms to solve very large linear systems through LDLt or
LU factorization, a prerequisite to call them is to have TermMatrix factorized. It can be done like below:

TermMatrix LD; / / Create a new TermMatrix to s t o r e f a c t o r i z e d r e s u l t
l d l t F a c t o r i z e (A , LD) ; / / LDLt−Factorize the TermMatrix

Then the linear system is solved with a very simple code

TermVector X = factSolve (LD, B) ;

The TermVector U is returned as a solution of the solver. Or a TermMatrix can be factorized into LU before
being solved

TermMatrix LD; / / Create a new TermMatrix to s t o r e f a c t o r i z e d r e s u l t
luFactorize (A , LD) ; / / LU−Factorize the TermMatrix
TermVector X = factSolve (LD, B) ;

Factorisation and solving may be called in one time:

TermVector X = luSolve (LD, B) ;

The available factorisations and direct solvers are

• LDLt factorisation and solver (for symmetric matrix): functions ldltFactorize, ldltSolve

• LDLstar factorisation and solver (for self-adjoint matrix): functions ldtstarFactorize, ldlstarSolve

• LU factorisation and solver (for any matrix): functions luFactorize, luSolve

• umfpack factorisation and solver (for any matrix) if umfpack is installed and configured: umfpackFactorize,
umfpackSolve

• gauss elimination with pivoting for matrix stored in dense format: gaussSolve

204

• Schur method on 2x2 TermMatrix : schurSolve

• lapack solver for matrix stored in dense format if lapack is installed and configured: lapackSolve

• magma solver for matrix stored in dense format if magma lib is available: magmaSolve

LDLt, LDLstar and LU move matrix to skyline storage and may fail even if the matrix is invertible (no pivoting
strategy)! Umfpack is most powerful because it works with compressed sparse storage and has pivoting strategy.

Be sure of symmetry property of your matrix before calling LDLt or LDLstar methods. If you are not, call generic
direct solver directSolve which performs tests before calling the well adapted method:

TermMatrix Af ; / / c r e a t e a new TermMatrix to s t o r e f a c t o r i z e d r e s u l t
f a c t o r i z e (A , Af) ; / / f a c t o r i z e the TermMatrix
TermVector X = factSolve (Af , B) ; / / s o l ve f a c t o r i z e d l i ne ar system

TermVector X = directSolve (A , B) ; / / same in one c a l l

The behaviour ofdirectSolve is the following:

• if matrix is dense : use lapack solver if available else use XLIFE++ gauss solver

• if matrix is sparse (compressed or skyline) use umfpack if available else use XLIFE++ factorization method

Note that direct solver may induce storage conversion so the TermMatrix storage may be modified. if you want
not, specify true as last argument of solver functions:

TermVector X = directSolve (A , B, true) ; / / keep o r i g i n a l matrix

The right hand side is never modified.

UMFPACK solver is always faster than XLIFE++ solvers but lapack solver may be slower than the
XLIFE++ gauss solver if non optimized lapack-blas libraries are used.

Most of solvers support multiple right hand sides given as a TermVectors or a std::vector<TermVector>:

TermVectors Bs ;
. . .
TermVectors Xs = directSolve (A , Bs) ;

The factSolve and directSolve functions can also be used with a TermMatrix right hand side, say B. Thus
they produce a TermMatrix which isA−1B. Even both the matrices A and B are sparse matrix, the matrixA−1B

is not sparse. It is stored using a column dense storage.

TermMatrix invM1M2=directSolve (M1,M2, _keep) ;
TermMatrix Id (M1, _idMatrix , " Id ") ;
TermMatrix invM1=directSolve (M1, Id , _keep) ;
TermMatrix invM1=inverse (M1) ;

Note that inverse(M1) is strictly equivalent to directSolve(M1,Id,_keep);.

Up to now, the usage of factSolve, directSolve functions with a TermMatrix as right hand side
and inverse() is restricted to single unknown TermMatrix.

8.2.2 Iterative solvers

Unlike direct solvers, the iterative ones are delivered with very simple interface. In contrast to direct solvers,
iterative methods approach the solution gradually, rather than in one large computational step. Up to now,
there are several built-in iterative solvers of XLIFE++:

205

• Conjugate Gradient (CG, CGS, BiCG, BiCGStab)

• Generalized Minimal RESidual (GMRes, Standard or Restarted)

• Quasi Minimal Residual (QMR)

• Successive Over Relaxation (SOR, SSOR)

These methods can be called with a preconditioner (SOR and SSOR excepted)

How to define a preconditioner ?

To define a preconditionner, use the class PreconditionerTerm:

TermMatrix A ;
Real omega ;
PreconditionerTerm precond (A , _ssorPrec , omega) ;

The PreconditionerTerm constructor takes 3 arguments:

• the matrix used to build the precondition matrix.

• the type of preconditioner. possible values are:

_luPrec the precondition matrix will be a LU precondition of the input matrix given

_ldltPrec the precondition matrix will be a LDLt precondition of the input matrix given

_ldlstarPrec the precondition matrix will be a LDL* precondition of the input matrix given

_ssorPrec the precondition matrix will be a SSOR precondition of the input matrix given

_diagPrec the precondition matrix will be a diagonal precondition of the input matrix given

_embeddedPrec the precondition matrix will be the input matrix given, with no transform

Its default value is _embeddedPrec

• the relaxation parameter when SSOR precondition. It is optional, and its default value is 1.0

How to call an iterative solver ?

To invoke an iterative solver and make use of it, the easiest way is to call external functions:

TermVector U = i t e r a t i v e S o l v e (A , B, _solver=_cg) ; / / Solve with default i n i t i a l guest X0=0

The available solvers (through their keys to the _solver parameter) are: _bicg, _bicgstab, _cg, _cgs, _gmres and
_qmr.
There are shortcuts specific to each solver:

TermVector U = cgSolve (A , B) ;

The available functions are bicgSolve, bicgStabSolve, cgSolve, cgsSolve, gmresSolve, qmrSolve.They all
call the general function iterativeSolve. All these functions take parameters in the following orders:

1. the matrix A (TermMatrix)

2. the right hand side B (TermVector)

3. optionally the initial guess X0 (TermVector)

4. optionally the preconditioner P (PreconditionerTerm)

5. optionally one or more keyvalue parameters, among the following:

206

_solver Only for routine iterativeSolve. This parameter is not optional.

_tolerance tolerance of the iterative solver. Default value is 1e-4 on 32 bits configurations, 1e-8 on 64
bits configurations.

_maxIt Maximum number of iterations. Default value is relative to the size of the linear system.

_verbose verbose level. Default value is 0.

_name the name of the TermVector solution computes by the routines. Default value is "U".

_omega Only for routines sorSolve and ssorSolve, the relaxation parameter.

_krylovDim Only for routine gmresSolve, the krylov dimension. Default value is the size of the linear
system (for use of Standard GMRes). If it is set and lesser than the maximum number of iterations, it
will be the Restarted GMRes.

An advanced use of solvers would be to instantiate an iterative solver object and call it using operator ():

CgSolver mySolver ; / / Define an i t e r a t i v e s o l v e r o b j e c t
TermVector U = mySolver (A , B, X0) ; / / Solve the system with i n i t i a l guess X0

For iterative solver objects, you can use the same keys as seen prevously (_solver excepted, as it is meaningless
here).

CgSolver mySolver (_tolerance =1.e−04 , _maxIt=20) ;
TermVector U = mySolver (A , B, X0) ; / / Solve the l in ear problem

In the code above with double precision, the tolerance is made looser than default, for a faster solution with
a convergence error being 10−4. Nevertheless, the solver will cease after 20 iterations even if the solution has
not been converged. It is a big disadvantage of the iterative solvers: they do not always “just work". Different
problems do require different iterative solver settings, depending on the nature of the governing equation being
solved. However, the advantage of the iterative solvers is their memory usage, which is significantly less than a
direct solver for the same sized problems. Look at the example “Helmholtz problem with CG solver" to know
more how to write code with iterative solvers.

Advanced usage

The usage of iterative solvers presented above concerns TermMatrix and TermVector objects. This may be
not adapted to some situations where the operators involved are not such objects or require some complex
operations. In fact, iterative solvers are objects that support any kind of operator on vector and vector classes.
The following exemple illustrates how to use the GMRES solver using your own operator class that implements
a product of TermMatrix:

/ / operator c l a s s to deal with TermMatrix product
class myOperator
{

const TermMatrix *A1_p , *A2_p ; / / pointers to TermMatrix
public :
myOperator (const TermMatrix& A , const TermMatrix& B)
: A1_p(&A) , A2_p(&B) { }

} ;
void multMatrixVector (const myOperator& A , const TermVector& X , TermVector& R)
{R=(*A1_p) * () (* A2_p) *X) ; } / / product A1 * (A2*X)
. . .
/ / assume TermMatrix A1 , A2 b u i l t and TermVector B b u i l t
myOperator A(A1 , A2) ;
GmresSolver gmres ; / / Gmres s o l v e r o b j e c t | more compact c a l l
TermVector X=gmres (A , B) ; / / | TermVector X=Gmres () (A , B) ;

Be cautious when dealing with large structures. In particular, use pointers or references to avoid
unnecessary copy.

207

If you plan to use other matrix operator/vector classes, you will have to define additional stuff. The operator
class, say Mat, must propose the following functions:

ValueType Mat : : valueType () / / returning type (r e a l _ t or complex_t)
void multMatrixVector (const Mat&,const Vec&,Vec&) / / a l l s o l v e r s
void multVectorMatrix (const Vec&,const Mat&,Vec&) / / f o r Bicg and Qmr s o l v e r s
/ / SOR requires also
void Mat : : sorLowerMatrixVector (const Vec&,Vec&,Real) const ; / / [w*D + L] * x
void Mat : : sorUpperMatrixVector (const Vec&,Vec&,Real) const ; / / [w*D + U] * x
/ / SSOR requires also
void Mat : : sorDiagonalMatrixVector (const Vec&,Vec&,Real) const ; / / [w*D] * x
void Mat : : sorLowerSolve (const Vec&,Vec&,Real) const ; / / [D/w + L] x = b
void Mat : : sorUpperSolve (const Vec&,Vec&, Real) const ; / / [U/w + U] x = b

The TermVector and Vector classes of XLIFE++ may be used in iterative solvers without any additional stuff.
However, if you want to deal with your own vector class, say Vec, the following functions have to be defined:

Vec : : Vec (const Vec&) / / copy constructor
Vec& Vec : : operator *=(Real) / / X*=a
Vec& Vec : : operator *=(Complex) / / X/=a
Vec& Vec : : operator *=(Complex) / / X*=a
Vec& Vec : : operator *=(Real) / / X/=a
Vec& Vec : : operator +=(const Vec&) / / X+=Y
Vec& Vec : : operator −=(const Vec&) / / X−=Y
Real Vec :norm2() / / | X| 2
Complex dotRC(const Vec&, const Vec&) ; / / X . Y
Complex hermitianProduct (const Vec&, const Vec&) ; / / X | Y = X . conj (Y)

Even if your class is related to real value vector, complex versions are required for compilation reasons but they
will not be used!

To use your own preconditioning class, say Prec, the minimal requirements are:

Prec : : precondMatrix_p / / pointer to an o b j e c t of Mat c l a s s
Vec Prec : : solver (Vec&) / / solution of P*x = b

8.3 Eigen solvers

XLIFE++ currently provides a built-in solver which targets Hermitian and non-Hermitian eigenvalue problems,
standard or generalized, and a wrapper to the well known external library ARPACK via its companion package
ARPACK++. The internal solver is provided in case ARPACK is not available (see subsection 1.4.3) ; as far as
possible, the latter should be preferred.

In the following, we will denote the problems using the generic form:

• A x =λx, for a standard eigenvalue problem,

• A x =λB x, for a generalized eigenvalue problem.

The couple (λ, x) is called an eigen pair, and consists of an eigenvalue λ and the corresponding eigenvector x.
The nature of the problem to be solved is determined by the matrix A: real or complex, symmetric or not, etc.

Both solvers can be used in a rather uniform way, although some parameters may be specific to one package or
the other. The calling sequence requires a few mandatory arguments ; some optional ones are provided by the
user in the form “_key = value".

In the following, we describe some features common to both solvers, targeting in particular the result object.
Then the parameters governing the computation are described for the built-in solver, followed by those related
to ARPACK, including a special help paragraph that is worth to be mentioned right now. At last, two special
sections are devoted to post-computation information retrieving and an advanced usage of ARPACK.

208

8.3.1 How to call an eigen solver ?

Given two suitable TermMatrix objects A and B, corresponding to the mathematical operators A and B above,
a few eigen elements can be computed as the result of one of the generic calling sequence:

EigenElements ees = eigenSolve (A) ; / / standard eigenvalue problem
EigenElements eeg = eigenSolve (A , B) ; / / generalized eigenvalue problem

In this example, 10 (the default number) eigen pairs are computed from the unique knowledge of the mandatory
arguments A, or A and B ; the other parameters are left to their default values. The function eigenSolve
automatically selects ARPACK if it is available, or the internal solver otherwise.
Remark.
The user may choose himself by adding the argument _solver=_intern or _solver=_arpack.

If they are present, the other parameters, given in the form “_key = value", are checked and passed to the specific
solver. Moreover, when ARPACK is used, some of them may be modified to benefit from experience feedback.
Also, ARPACK requires the RHS matrix B to be hermitian to ensure the convergence of the computation. When
this does not seem to be the case, the original generalized problem is automatically transformed into a standard
problem. Whenever such a decision is made or a parameter is modified, an information message is printed on
the terminal and in the main print file of XLIFE++.

The user has always direct access and full control over the parameters (which are never modified in this case)
by using the specific functions: the function eigenInternSolve provides a direct access to the built-in solver,
while arpackSolve uses ARPACK. With these functions, the statements in the previous example would become:

/ / s p e c i f i c c a l l to internal engine
EigenElements eesi = eigenInternSolve (A) ; / / standard eigenvalue problem
EigenElements eegi = eigenInternSolve (A , B) ; / / generalized eigenvalue problem

/ / s p e c i f i c c a l l to Arpack engine
EigenElements eesa = arpackSolve (A) ; / / standard eigenvalue problem
EigenElements eega = arpackSolve (A , B) ; / / generalized eigenvalue problem

8.3.2 Results

All these functions store their result in an EigenElements object that holds two containers:

• values, containing the list of the found eigenvalues,

• vectors, containing the list of the corresponding eigenvectors.

The eigenvectors are always computed together with the eigenvalues. Both containers have the same size
which can be obtained with the member function numberOfEigenValues(). The list values is in fact a vector
of complex numbers (even if the problem is real symmetric), and vectors is a vector of TermVector objects.
Given an EigenElements object eeg, these containers can be used directly by eeg.values and eeg.vectors
with the standard C++ syntax ; alternatively, some member functions are available to extract the eigen pairs
using their number, starting at 1. Their names are simply value and vector. For example, the following code
prints the computed eigenvalues stored in eeg, the real part and the imaginary part being separated with a
white space if they are complex:

i f (eeg . isReal ()) { / / eigenvalues and e i g e n v e c t o r s are r e a l
for (int i =1; i <= eeg . numberOfEigenValues () ; i ++) {

cout << eeg . value (i) . real () << endl ;
}

}
else { / / eigenvalues or e i g e n v e c t o r s may not be r e a l

for (int i =1; i <= eeg . numberOfEigenValues () ; i ++) {
cout << eeg . value (i) . real () << " " << eeg . value (i) . imag () << endl ;

}
}

209

The type of the eigenvalues depends on the problem. It can be retrieved by the member function isReal(), as
shown above, which returns true if the problem is real symmetric, false otherwise.

The eigenvalues are always returned as complex numbers, even if the problem is real symmetric in which case
the imaginary parts are set to 0. The eigenvectors are real if the problem is real symmetric, complex otherwise.

By default, the eigenvalues are sorted by increasing module ; the eigen pairs are internally stored according to
this order. There are several sorting possibilities which can be specified by the _sort key (see below).

The eigenvectors can be easily used in the following of the program, since they are available as TermVector
objects. They can also be saved individually into a file using one of the output format, in order to be plotted
afterwards. The statement:

saveToFile ("V1" , eeg . vector (1) , _vtk) ;

creates the file V1_Omega.vtk, whose name is build from the prefix given by the user and the name of the
domain where the solution is computed ; the suffix is automatically appended according to the output format
(here .vtk).

Moreover, an EigenElements object can be saved in multiple files in a single statement:

saveToFile ("EV" , eeg , _vtk) ;

The names of all the created files will begin with the same prefix given as first argument (here EV). The
eigenvalues will be written in the file EV_eigenvalues and the i th eigenvector will be written in the file
EV_i_DomainName.ext, where DomainName will be replaced with the domain name and the extension depend
on the chosen format (here .vtk). The eigenvalues are printed in the file EV_eigenvalues from the first one
to the last one according to the chosen sorting criterion ; the eigenvectors are printed in files whose numbers
follow the same order.

8.3.3 Calling sequence

Let’s recall that the functions eigenSolve, eigenInternSolve and arpackSolve have two main calling se-
quences according to the kind of problem to define. The arguments can be:

• A, _key1=value1, . . . _keyN=valueN, in the case of a standard eigenvalue problem,

• A, B, _key1=value1, . . . _keyN=valueN, in the case of a generalized eigenvalue problem.

The arguments A and B are TermMatrix objects. The others (key, value) pairs are not mandatory. They are used
to specify some particular settings. They can be given in any order and their list is given in the corresponding
sections below.

Optional parameters for the built-in eigen solver in details

The built-in eigen solver accepts the following keys:

_nev (integer) number of eigen elements to be computed. The default value is 10.

_which (string) specifies which part of the spectrum is to be scanned. The default value is “LM", for largest
magnitude. The other possible value is “SM", for smallest magnitude.

_sigma (real or complex) shift value σ used in the spectral transformation in order to scan a portion of the
spectrum around σ.

_mode (enumeration) Two computational modes are implemented:

• the block Krylov-Schur method, based on Krylov decomposition with Rayleigh quotient ably reduced
to Schur form, and suitable for hermitian and non hermitian eigenvalue problems. To call it, use the
value _krylovSchur. This is the default.

210

• the block Davidson method, suited only for hermitian problems and sometimes faster than the
block Krylov-Schur algorithm. To call it, use the value _davidson.

_tolerance (real) precision of the computation. The default value is 1e-6.

_maxIt (integer) maximum number of iterations. The default value is 10000.

_verbose (integer) verbosity level. The default value is the value used in the main frame.

_sort (enumeration) sort criterion. The default value is _incr_module, which means “by increasing mod-
ule". One can also sort by increasing real part (_incr_realpart) and by increasing imaginary part
(_incr_imagpart) ; conversely, one can sort by decreasing order by selecting one of _decr_module,
_decr_realpart or _decr_imagpart.

Examples:

The following call computes the 20 eigenvalues of largest magnitude (and the corresponding eigenvectors) of a
generalized eigenvalue problem using the block Davidson method:

Number nev = 20;
EigenElements ee = eigenInternSolve (A , B, _nev=nev , _which="LM" , _mode=_davidson) ;

The following call computes nev eigenvalues around the complex shift value 2.5+ i (and the corresponding
eigenvectors) of a generalized eigenvalue problem using the block Krylov-Schur method:

Complex s i g = (2 . 5 , 1 .) ;
EigenElements ee = eigenInternSolve (A , B, _nev=nev , _sigma= s i g) ;

Optional parameters for ARPACK solver in details

The ARPACK solver accepts the following keys:

_nev (integer) number of eigen elements to be computed. The default value is 10.

_which (string) specifies which part of the spectrum is to be scanned. The default value is "LM", for largest
magnitude. The possible values are:

Value Description

BE eigenvalues from both ends of the spectrum

LA eigenvalues with largest algebraic value

SA eigenvalues with smallest algebraic value

LM eigenvalues with largest magnitude

SM eigenvalues with smallest magnitude

LR eigenvalues with largest real part

SR eigenvalues with smallest real part

LI eigenvalues with largest imaginary part

SI eigenvalues with smallest imaginary part

For symmetric problems, _which must set to be one of LA, SA, LM, SM or BE. For real nonsymmetric and
complex problems, the alternatives are LM, SM, LR, SR, LI and SI.

_sigma (real or complex) shift value σ used in the spectral transformation in order to scan a portion of the
spectrum around σ.

211

_mode (enumeration) when a shift is specified (thanks to _sigma), some additional computational modes are
available. In order to activate one of them, one of the following keywords should be specified:

• _buckling or _cayley for the Buckling mode or the Cayley mode, for a generalized real symmetric
problem,

• _cshiftRe or _cshiftIm for the complex shift invert mode, for a generalized real nonsymmetric
problem.

_tolerance (real) precision of the computation. The default value is set by ARPACK to the machine epsilon.

_maxIt (integer) maximum number of iterations. The default value is computed by ARPACK.

_ncv (integer) number of Arnoldi vectors to be computed. It must be less than the dimension of the problem.
The default value is computed by ARPACK. WHen eigenSolve is used, this default value is a little improved
for small/intermediate linear systems.

_convToStd parameter specified to force the conversion of a generalized problem into a standard one. This
key does not take any value: it is present or absent (any assigned value is ignored).

_forceNonSym parameter specified to force to use a nonsymmetric computational mode although the problem
is symmetric. This key does not take any value: it is present or absent (any assigned value is ignored).

_verbose (integer) verbosity level. The possible values are 0 or 1, and the default value is 0, which means no
output trace.

_sort (enumeration) sort criterion. The default value is _incr_module, which means “by increasing mod-
ule". One can also sort by increasing real part (_incr_realpart) and by increasing imaginary part
(_incr_imagpart) ; conversely, one can sort by decreasing order by selecting one of _decr_module,
_decr_realpart or _decr_imagpart.

For a better understanding of all those parameters, one should know that ARPACK classifies the eigenvalue
problems first as standard or generalized problems, and second according to the matrix A which can be
real symmetric, real nonsymmetric or complex. This makes six categories that all own at least two main
computational modes called “regular" and “shift and invert". The “regular" mode is automatically selected if no
shift is given. Some additional particular shifted computational modes exist for generalized problems ; this is
summarized in the following table:

Kind of problem Computational mode Relevant parameters

Standard, real symmetric, Regular _which

nonsymmetric or complex Shift and invert _sigma

Regular _which

Generalized Shift and invert _sigma

real symmetric Buckling _sigma, _mode=_buckling

Cayley _sigma, _mode=_cayley

Regular _which

Generalized Real shift and invert _sigma

real nonsymmetric Complex shift and invert (Re) _sigma, _mode=_cshiftRe

Complex shift and invert (Im) _sigma, _mode=_cshiftIm

Generalized Regular _which

complex Shift and invert _sigma

212

Hypotheses. For a generalized eigenvalue problem:

• if A is real, the matrix B is required to be real symmetric positive semi-definite, except in regular mode
where it should be real symmetric positive definite. In bukling mode, the real symmetric matrix A is
required to be positive semi-definite while B is only required to be real symmetric indefinite;

• if A is complex, the matrix B is required to be hermitian positive semi-definite, except in regular mode,
where it should be positive definite. Notice that B may still be real and symmetric.

It should be noticed that the parameters _nev, _tolerance, _maxIt, _ncv and _verbose can be used in any
case. On the contrary, _which and _sigma are mutually exclusive ; the latter takes precedence over the former.
Moreover, _mode indicates a particular shifted computational mode, and as such is ignored if it is used without
_sigma.

For generalized problems, the shifted modes require the computation of (A −σB)−1x (see the table in the
section Advanced usage of ARPACK below). When A is real nonsymmetric and σ is complex, (A −σB)−1 is
complex, but the internal computation steps of the algorithm are performed in real arithmetic (the vector x is
real). This saves memory requirements and computation time. This is the reason why the user should specify
which part of the operator (A−σB)−1, real or imaginary, must be taken into account. Both strategies lead to
comparable results (see ARPACK’s documentation). The parameter _mode should be set to _cshiftRe to select
ℜ(

(A−σB)−1
)
; it should be set to _cshiftIm to select ℑ(

(A−σB)−1
)
, and in this case obviously, the imaginary

part of σ should not be null.

The parameter _convToStd can be used to convert the generalized problem A x =λB x into the standard one
B−1 A x =λx. This feature increases the number of computational modes available. This is done internally with
the help of a so-called user-class in a way described in the section Advanced usage of ARPACK below.

When the function eigenSolve is called to solve a generalized problem, tests are performed to
check the hypotheses given above. Thus, if it happens that they do not seem to be fulfilled, the

conversion into a standard problem is automatically done and an information message is printed.

In the same spirit, _forceNonSym is a switch useful to allow the computational modes of the real nonsymmetric
case to be used for a real symmetric problem ; indeed, it may happen that the symmetric algorithms fail, and
using the nonsymmetric algorithms can be helpful to obtain a solution. As a last resort, we can also use the
complex algorithms, but the entries of the matrix A should be first converted to complex (to achieve that, see
the second example in the section Advanced usage of ARPACK below).
Example:
The following call computes the 20 eigenvalues of smallest magnitude (and the corresponding eigenvectors) of
a standard eigenvalue problem using the regular mode, with a prescribed tolerance:

Number nev = 20;
EigenElements ee = arpackSolve (A , _nev=nev , _which="SM" , _tolerance =1.e−12) ;

♠ Some hints about the parameters.
The convergence of the algorithms highly depends on the data. The ideal situation is when there is no multi-
plicity and the eigenvalues are well separated, which is rarely the case in practice. Here are some hints to help
convergence to occur.

In regular mode, ARPACK is better used to search for eigenvalues of largest magnitude (this is why “LM” is the
default value of the parameter _which). Thus, as far as possible, the problem should be written to use this
mode. It may happen that the eigenvalues of smallest magnitude are hard to compute ; in this case, try using
the shifted mode which is generally very powerful.

If there is multiplicity or the eigenvalues are clustered, consider decreasing or on the contrary increasing the
number of requested eigenvalues.

213

The number of iterations is by default computed by ARPACK and is generally large enough ; if convergence is not
attained, the tolerance (_tolerance) or the number of Armoldi vectors (_ncv) should be modified in priority.
By default, ARPACK sets the tolerance parameter to the machine epsilon which insures the computation to
be performed with the highest possible precision. This represents the relative precision on the computed
eigenvalues. It sometimes happens that this stopping criterion is unattainable and the tolerance value should
be increased. On the other hand, a too loose value may lead the algorithm to miss some eigenvalues.
The last parameter that can be tuned is the number of Arnoldi vectors generated by the algorithm at each
iteration. This parameter can greatly influence the convergence of the algorithm ; it is related with the dimension
of the subspaces associated to the eigenvalues. It must be greater than the number of wanted eigenvalues nev
and less than the problem dimension n. By default, ARPACK sets it to min(2*nev + 1, n-1). Increasing this value
may facilitate the convergence ; on the other hand, this increases the computational time and the memory
consumption.

To sum up, here are some actions that can be undertaken to get convergence, listed in the order it is advisable
to try them :

1. if possible, use a formulation of the eigenvalue problem in order to use the default "LM" computation
mode,

2. change the number of requested eigenvalues (_nev),

3. change the computation mode (_which, _sigma, _mode, _convToStd, _forceNonSym),

4. increase the number of Arnoldi vectors (_ncv),

5. increase the tolerance (_tolerance), which will lose precision.

Retrieving post-computation informations

After a computation with ARPACK, one can inquire about informations related to this last computation. The
simplest way to get these informations is to call the function

String arEigInfos () ;

which gathers the main informations into a string and returns it. This string can then be printed out.
To do that, arEigInfos calls external functions whose names are the names of the true ARPACK++ function
names prefixed with ar (the true ARPACK++ functions are member functions that should be used in conjunction
with an ARPACK object ; these ones are external functions that can be directly used alone). The available
functions are the following:

bool arParametersDefined () ;

which returns true if all internal variables were correctly defined, false otherwise.

int arConvergedEigenvalues () ;

which returns the number of eigenvalues found. This is the same value as the one provided by the member
function numberOfEigenValues() already seen in the Results section above.

int arGetMaxit () ;

which returns the maximum number of Arnoldi update iterations allowed.

int arGetMode () ;

which returns the computational mode used as described in the following table:

214

Value Mode

1 regular mode (standard problems)
2 regular inverse mode (generalized problems)
3 shift and invert mode. For real nonsymmetric generalized problems, this option

can also mean that a complex shift is being used but, in this case the operator is
ℜ(

(A−σB)−1
)

4 buckling mode (real symmetric generalized problems) or shift and invert mode with
complex shift and the operator is ℑ(

(A −σB)−1
)

(real nonsymmetric generalized
problems)

5 Cayley mode (real symmetric generalized problems)

std : : s t r i n g arGetModeStr () ;

which returns a user friendly string describing the computational mode used. This function does not exist
in ARPACK and has been written in complement to the previous one which gives a rather raw information.

int arGetIter () ;

which returns the number of Arnoldi update iterations actually taken by ARPACK to solve the eigenvalue
problem.

int arGetN () ;

which returns the dimension of the eigenvalue problem.

int arGetNcv () ;

which returns the number of Arnoldi vectors generated at each iteration.

int arGetNev () ;

which returns the number of required eigenvalues. The number of eigenvalues actually found, however,
is given by the function arConvergedEigenvalues.

std : : complex<double> arGetShift () ;

which returns the shiftσ used to define the spectral transformation. This one is a slightly modified version
of the original ARPACK’s one in that it returns a complex value ; so if the problem is real symmetric, only
the real part is relevant. If the problem is being solved in regular mode, this function will return 0.0. To
avoid any confusion in this case, the user should call the function arGetMode before this one.

double arGetShiftImag () ;

which returns the imaginary part of the shift when the shift and invert mode is being used to solve a real
nonsymmetric problem. This value is also returned as the imaginary part of the previous function.

double arGetTol () ;

which returns the stopping tolerance used to find the eigenvalues. It corresponds to the relative accuracy
of the computed eigenvalues.

std : : s t r i n g arGetWhich () ;

which returns the part of the spectrum the user is seeking for. The returned string is one of those used in
conjunction with the parameter _which above.

215

♠ A full example.

The following program computes the smallest eigenvalues of the Laplace operator on a segment with Neumann
conditions. The approximation is made with the finite element method using a single element, the segment
[0,π], with an interpolation degree k = 60. The quadrature rule has degree 2k +1. The expected eigenvalues are
the square of the integers, i.e. 0, 1, 4, 9, 16, 25, 36, 49, etc. Two computational modes are shown. After the call to
arpackSolve, informations about the computation done are retrieved and printed, as long as the converged
eigenvalues and the corresponding eigenvectors.

#include " x l i f e ++.h"
using namespace x l i f e p p ;

int main(int argc , char ** argv) {
i n i t (argc , argv , _lang=en) ; / / mandatory i n i t i a l i z a t i o n of XLiFE++

theCout << " Eigenvalues of the 1D Laplace operator with Neumann conditions \n" ;
theCout << " ==\n" ;

Number nbint =1; / / number of i n t e r v a l l s
Number dk=60; / / interpolation degree
theCout << " Interpolation degree = " << dk << eol ;

/ / mesh : segment [0 , pi]
Segment seg (_xmin=0 , _xmax=pi_ , _nnodes=nbint +1) ;
Mesh zeroPi (seg , 1) ;
Domain omega = zeroPi . domain("Omega") ;

Space Vk(_domain=omega, _FE_type=Lagrange , _FE_subtype=GaussLobattoPoints , _order=dk ,
_Sobolev_type=H1, _name="Vk") ;

Unknown u(Vk , "u") ;
TestFunction v (u , "v") ;

Number qrodeg = 2*dk+1;
BilinearForm muv = intg (omega, u * v , defaultQuadrature , qrodeg) ,

auv = intg (omega, grad (u) | grad (v) , defaultQuadrature , qrodeg) ;
/ / Compute the S t i f f n e s s and Mass matrices
TermMatrix S (auv , "auv") , M(muv, "muv") ;

/ / The eigenvalue problem writes S x = l M x
/ / Compute the nev f i r s t eigenvalues with smallest magnitude with Arpack

Number nev = 8 ;
EigenElements areigs = arpackSolve (S , M, _nev=nev , _which="SM") ;
/ / Other computational mode choice , here more powerfull :
/ / EigenElements a r e i g s = arpackSolve (S , M, _nev=nev , _sigma =0.5) ;

theCout << arEigInfos () ;

theCout . precision (17) ;
theCout << " Eigenvalues : " << endl ;
Number nconv = areigs . numberOfEigenValues () ;
for (Number i = 0 ; i < nconv ; i ++) { cout << areigs . value (i +1) . r e a l () << endl ; }

saveToFile ("Sy" , areigs , matlab) ;
}

The output produced by this program is the following:

Eigenvalues of the 1D Laplace operator with Neumann conditions
==

Interpolation degree = 60
computing FE term intg_ #Omega grad (u) | grad (v) , using 1 threads : done

216

computing FE term intg_ #Omega u * v , using 1 threads : done

Summary of l a s t Arpack computation :
Number of eigenvalues (requested / converged) : 8 / 8
Computational mode: regular inverse mode (generalized problem)
Part of the spectrum requested : SM
Problem s i z e = 61 , Tolerance = 1.11022e−16
Nb_iter / Nb_iter_Max = 443 / 800 , Number of Arnoldi vectors = 17

Eigenvalues :
1.6569854567517169e−10
0.99999999999869593
4.0000000000087512
9.0000000000560245
16.000000000016872
25.000000000006708
36.000000000077279
48.999999999728566

If we comment the line containing the first call to arpackSolve using regular computational mode and
uncomment the second one using a shift, the last part of the output is the following:

Summary of l a s t Arpack computation :
Number of eigenvalues (requested / converged) : 8 / 8
Computational mode: s h i f t and inv ert mode
S h i f t used : (0 . 5 , 0)
Problem s i z e = 61 , Tolerance = 1.11022e−16
Nb_iter / Nb_iter_Max = 4 / 800 , Number of Arnoldi vectors = 17

Eigenvalues :
9.5701224722688494e−14
0.9999999999997693
4.0000000000003446
8.9999999999997247
15.999999999999394
25.000000000000259
35.999999999999922
48.999999999999908

We can observe that the eigenvalues are numerically close to the previous ones. It’s worth noting that the first
one, which is expected to be 0, is better approximated with the shifted computational mode, and the number
of iterations is reduced from 443 to 4. Indeed, using a shifted mode is often suitable since the convergence
is attained faster than with the “SM” mode, but this is not a general rule and this depends on the problem.
Moreover, the choice of the shift should be made manually and carefully since every eigenvalue is forbidden.
Here, in order to retrieve the eigenvalues of smallest magnitude, the value 0.5 has been chosen, which lies
between the first two eigenvalues.
The last statement of the program produces nine files ; their names are Sy_eigenvalues, which contains the
eigenvalues, and Sy_i_Omega.m with i equal to 1, 2. . . 8, which contain the components of the eigenvectors,
one eigenvector per file. Of course, the two computational modes give the same eigenvectors, possibly with a
change in the sign. They are shown on the following figure (obtained as described in section 9.3):

217

Figure 8.7: First eigenvectors of Laplace operator on a segment with Neumann conditions.

8.3.4 Advanced usage of ARPACK

The way the function arpackSolve is to be used, as presented so far, is sufficient if the operator A can be
expressed as a linear combination of TermMatrix objects, or more frequently as a unique TermMatrix object
built from a combination of bilinear forms. However, when the definition of the operator involves other alge-
braic operations, like the computation of the inverse of a matrix for example, the above process cannot be used.

Indeed, it requires the creation of a specific object containing the sequence of operations needed to define the
operator. In other words, the user has to write a class describing the way the operator can be computed.

This strategy is used internally in XLIFE++ when the function eigenSolve is called to transform
a generalized problem into a standard one when the matrix B is not hermitian.

In the following, we give some general guidelines, followed by additional technical features shown on a first
example ; two other examples complete the description of the practical implementation. In order to benefit
from the following paragraphs, the user should know some fundamentals of the C++ programming language.

♠ General guidelines.

In order to get rid of the technicalities of ARPACK++ and to help to the creation of the user class, a general frame
has been prepared that involves the creation of an intermediate placeholder object whose type is ArpackProb,
designed to hold the characteristics of the true ARPACK object internally created. The definition of the user class

218

should be made in coherence with the ARPACK computational mode chosen, hold in the ArpackProb object. To
summarize this, the user has to:

1. create a so-called user class to define the operators of the problem (this requires some programming
work),

2. use it to create an ArpackProb intermediate object (this is straightforward),

3. call arpackSolve with this object as unique argument.

ARPACK++’s usage made here imposes the user class to define some matrix-vector products related to the
computational mode chosen. The required products are described in the documentation of ARPACK++ and are
summarized in the following table. The name of the member functions, MultOPx, MultBx and MultAx, are the
generic names used in the documentation of ARPACK++. They have been kept here to make things easier and
should be left unchanged in our context:

Kind of problem Computational mode Matrix-vector products Member fcts to
use

Standard all
Regular y ← A x MultOPx
Shift and invert y ← (A−σ I d)−1 x MultOPx

Generalized

real symmetric

Regular
y ← B−1 A x ; x ← A x MultOPx
y ← B x MultBx

Shift and invert
y ← (A−σB)−1 x MultOPx
y ← B x MultBx

Buckling
y ← (A−σB)−1 x MultOPx
y ← A x MultBx

Cayley
y ← (A−σB)−1 x MultOPx
y ← A x MultAx
y ← B x MultBx

real
nonsymmetric

Regular
y ← B−1 A x MultOPx
y ← B x MultBx

Real shift and invert
y ← (A−σB)−1 x MultOPx
y ← B x MultBx

Complex shift and
invert (real part)

y ←ℜ((A−σB)−1) x MultOPx
y ← A x MultAx
y ← B x MultBx

Complex shift and
invert (imag part)

y ←ℑ((A−σB)−1) x MultOPx
y ← A x MultAx
y ← B x MultBx

complex
Regular

y ← B−1 A x MultOPx
y ← B x MultBx

Shift and invert
y ← (A−σB)−1 x MultOPx
y ← B x MultBx

In order to help to the definition of the user class, we have found convenient to create it as a derived class
of ARStdFrame<real_t>, ARStdFrame<complex_t>, ARGenFrame<real_t> or ARGenFrame<complex_t>, de-
pending on the nature of the problem, standard or generalized, and its type, real or complex. As their name
suggests, these classes are frames prepared to facilitate the definition of the matrix-vector product(s) required
by the computational mode chosen. They are abstract classes that declare the matrix-vector products MultOPx,
MultBx and MultAx as virtual functions that the user must provide. They have a unique constructor whose
prototype is:

template<class K_> ARStdFrame(const TermMatrix& charMat) ;
template<class K_> ARGenFrame(const TermMatrix& charMat) ;

219

The unique argument is a so-called characteristic matrix that allows to retrieve informations about the context
of the problem such as its dimension and the associated unknowns. In practice, it is one of the matrices involved
in the definition of the operator A. Those two classes derive themselves from the class ARInterfaceFrame that
provides, in addition, the member function

int GetN () ;

which returns the dimension of the problem to be solved.

We will now show how all this takes place and give further details on an example.

♠ User class example 1.

We consider again the problem of the Laplace operator on a segment with Neumann conditions (see the
previous section). This problem is written and solved there as a generalized eigenvalue problem S x =λM x.
Now, assume we want to write this problem as a standard eigenvalue problem M−1 S x =λx, which is correct
since the mass matrix M is invertible. We are facing to the operator A = M−1 S that cannot be handled in the
framework presented in the previous sections. Thus, we write a special class StdNonSym whose definition is the
following:

class StdNonSym : public ARStdFrame<Real> {
public :

/ / ! constructor
StdNonSym(TermMatrix& S , TermMatrix& M) ;

/ / ! destructor
~StdNonSym () { delete fact_p ; }

/ / ! matrix−vector product required : y <− inv (M) *S * x
void MultOPx(Real *x , Real * y) ;

private :
/ / ! pointers to internal data o b j e c t s
const LargeMatrix<Real> *matS_p , *matM_p;
/ / ! pointer to temporary f a c t o r i z e d matrix M
LargeMatrix<Real >* fact_p ;

} ; / / end of Class StdNonSym ===

This class contains three member functions: a constructor (with two arguments which are the two matrices
needed to define the problem), the destructor and the matrix-vector product required, whose name is MultOPx,
as mentionned in the previous table.

Since we plan to use the regular computational mode, the function MultOPx should compute the result y of
M−1 S x for a given x. This is done in two steps: first compute z = S x, second solve M y = z using a Cholesky
factorization of M which is symmetric positive definite. The function MultOPx may be called many times
during the computation, so the Cholesky factorization of M has to be computed once and stored. This is done
in the constructor through the initialization of the pointer fact_p, along with the initialization of the two other
pointers matS_p and matM_p (see below).

The destructor’s unique role is to free the memory allocated to store the Cholesky factorization. Let’s now
describe the constructor and the matrix-vector product in more details. The implementation is the following:

/ * !
Assumptions (not checked) :

S r e a l
M r e a l symmetric p o s i t i v e d e f i n i t e

* /
StdNonSym : : StdNonSym(TermMatrix& S , TermMatrix& M)
: ARStdFrame(S) , matS_p(&S . matrixData () −>getLargeMatrix <Real > ()) ,

matM_p(&M. matrixData () −>getLargeMatrix <Real > ()) {

fact_p = newSkyline (matM_p) ;

220

l d l t F a c t o r i z e (* fact_p) ;
}
/ / ! Matrix−vector product y <− inv (M) *S * x
void StdNonSym : : MultOPx(Real *x , Real * y) {

array2Vector (x , l x) ;
std : : vector <Real> Sx (GetN ()) ;
multMatrixVector (* matS_p , lx , Sx) ;

/ / Solve l i ne ar system . Matlab equivalent : l y = matM_p \ Sx ;
(fact_p −> l d l t S o l v e) (Sx , l y) ; / / s t o r e the solution into l y
vector2Array (ly , y) ;

}

Since StdNonSym derives from ARStdFrame, the ARStdFrame constructor is first called, passing S as the charac-
teristic matrix, and the pointers matS_p and matM_p are initialized. They hold the addresses of the low level
LargeMatrix objects containing the effective real data values. The reason is that the algebraic operations are
attached to the LargeMatrix class with the adequate storage type. Then the Cholesky factorization of M is
computed in two steps: first record in the pointer fact_p the result of newSkyline, i.e. the address of a copy of
the matrix M stored in skyline storage type, second call the function ldltFactorize to compute the Cholesky
factorization.

The prototype of the function MultOPx is imposed by ARPACK. Each of the two arguments is the address of a
C-style array. But the algebraic operations provided by XLIFE++ require operands whose type are std::vector.
Thus, the data values should be copied in and out using the two utilitary functions array2Vector and
vector2Array. The two vectors lx and ly are local buffers with the right size prepared for this purpose ;
they are members of ARInterfaceFrame and are ready to use. Thus, the input array x is first copied into the
local vector lx, then the matrix-vector product Sx is computed by the function multMatrixVector and stored
into the local vector Sx. Then comes the resolution of the linear system M y = Sx by the function ldltSolve
which uses the precomputed Cholesky factorization through the pointer fact_p. At last, the result is copied
from the local vector ly into the output array y.

The following action is to use this user class to create an ArpackProb intermediate object which will set the
computational mode to be used by ARPACK. For this purpose, five constructors are available. In their list
of arguments, usrcl denotes the user class, which bears the the kind of problem to be solved, standard or
generalized, and nev is the number of desired eigenvalues:

• Constructors for regular mode (for standard or generalized eigenvalue problems)

The argument which defines the part of the spectrum to be scanned. The possible values are described in
a previous section (see optional parameter _which).

1. real case

ArpackProb (const ARInterfaceFrame<Real>& usrcl , int nev , const char * which , bool sym = true) ;

The last argument sym specifies by default to use the algorithm designed for a symmetric operator ;
if it takes the value false, then the algorithm designed for a nonsymmetric operator will be used.

2. complex case

ArpackProb (const ARInterfaceFrame<Complex>& usrcl , int nev , const char * which) ;

• Constructors for shifted computational mode (for standard or generalized problems)

1. • real symmetric case:

– for standard problems: shift and invert mode (default)

– for generalized problems: shift and invert mode (default), buckling and Cayley mode

• real nonsymmetric case:

– for standard or generalized problems: (real) shift and invert mode

221

ArpackProb (const ARInterfaceFrame<Real>& usrcl , int nev , bool sym, double sigma , char cMode =
' S ') ;

As above, the argument sym tells if the algorithm designed for the symmetric case (true) or non-
symmetric case (false) should be used. The argument sigma is the value of the shift (real number
here). The buckling and Cayley modes can be selected by giving the argument cMode the character
value ’B’ or ’C’ respectively.

Note: for standard eigenvalue problems, this last argument (computational mode cMode) is irrelevant
and thus has not to be specified.

2. real nonsymmetric case, for generalized problems only: complex shift and invert mode

ArpackProb (const ARInterfaceFrame<Real>& usrcl , int nev , double sigmaR , double sigmaI , char cMode
= 'R ') ;

The shift is given by both its real part, sigmaR, and its imaginary part, sigmaI. The argument cMode
should be set to ’R’ to select ℜ(

(A−σB)−1
)
; it should be set to ’I’ to select ℑ(

(A−σB)−1
)

(for more
explanations, see the description of the parameter _mode in the previous section).

3. complex case, for standard or generalized problems: shift and invert mode

ArpackProb (const ARInterfaceFrame<Complex>& usrcl , int nev , double sigmaR , double sigmaI = 0 . 0) ;

The shift is given by both its real part, sigmaR, and its imaginary part, sigmaI.

In order to terminate this illustration, the last thing to do is to call the solver. Technically, we can reuse the
program shown at the end of the previous section and called A full example. and do the following:

1. copy the declaration of the user class StdNonSym, followed by its implementation as given above, just
before the main function,

2. replace the call to arpackSolve:

EigenElements areigs = arpackSolve (S ,M, _nev=nev , _which="SM") ;

by the three lines:

StdNonSym usrcl (S ,M) ;
ArpackProb Arpb (usrcl , nev , "SM" , f a l s e) ; / / f a l s e means " use the nonsymmetric algorithm "
EigenElements areigs = arpackSolve (Arpb) ;

The first line creates an object called usrcl by calling the constructor of the user class to which the
stiffness and mass matrices are passed. Then, the intermediate object Arpb is created using the first
constructor in the list just above. This completely defines the ARPACK problem: the user class derives
from ARStdFrame<real_t>, so it is a real standard problem ; the eigenvalues of smallest magnitude are
requested and the nonsymmetric algorithm is chosen. Indeed, the operator A = M−1 S is not symmetric,
so we should select the corresponding computational mode (this justifies the name given to the user
class).

3. print the eigenvalues as complex numbers by removing the call to real() in the last line of the program:

for (int i = 0 ; i < nconv ; i ++) { cout << areigs . value (i +1) << endl ; }

The output produced by this new program is the following:

Interpolation degree = 60
computing FE term intg_Omega grad (u) | grad (v) , using 1 threads : done
computing FE term intg_Omega u * v , using 1 threads : done

Number of eigenvalues (requested / converged) : 8 / 8

222

Computational mode: regular mode (standard problem)
Part of the spectrum requested : SM
Problem s i z e = 61 , Tolerance = 1.11022e−16
Nb_iter / Nb_iter_Max = 266 / 800 , Number of Arnoldi vectors = 17

Eigenvalues :
(−3.9936942641816131e −12 ,0)
(0.99999999998896483 ,0)
(3.9999999999884972 ,0)
(8.9999999999974278 ,0)
(15.999999999996687 ,0)
(25.000000000000899 ,0)
(35.999999999997002 ,0)
(63.999999992827938 ,0)

We can observe that the last eigenvalue is close to 64 instead of 49 which has been missed. Inserting the line

Arpb . ChangeTol (1 . e−15) ;

between the declaration of Arpb and the call to arpackSolve sets a slightly relaxed value of the tolerance that
suffices to obtain the expected result:

Interpolation degree = 60
computing FE term intg_Omega grad (u) | grad (v) , using 1 threads : done
computing FE term intg_Omega u * v , using 1 threads : done

Number of eigenvalues (requested / converged) : 8 / 8
Computational mode: regular mode (standard problem)
Part of the spectrum requested : SM
Problem s i z e = 61 , Tolerance = 1e−15
Nb_iter / Nb_iter_Max = 252 / 800 , Number of Arnoldi vectors = 17

Eigenvalues :
(−3.9815928332131989e −12 ,0)
(0.99999999998896794 ,0)
(3.9999999999885101 ,0)
(8.9999999999974225 ,0)
(15.999999999996653 ,0)
(25.000000000000909 ,0)
(35.999999999996525 ,0)
(48.999999999971514 ,0)

♠ Other tuning functions
This gives the opportunity to mention that the parameters governing the computation can be set using exactly
the same function names as the ones defined in ARPACK++. Besides the function ChangeTol just seen, we can
use the following functions:

• ChangeMaxit(int) to change the maximum number of iterations,

• ChangeNcv(int) to change the number of Arnoldi vectors to be computed.

• Trace() to activate the output of statistics related to the computation.

For more information, see the description of the parameters _maxIt, _ncv and _verbose in the previous section.
♠ User class example 2.
As a second example, we can use the complex algorithm to solve the same problem. The operator A = M−1 S
should be complex ; for this, we choose to convert the matrix S to complex. The corresponding user class
StdComp is a slight modification of the class StdNonSym:

class StdComp : public ARStdFrame<Complex> {
public :

/ / ! constructor
StdComp(TermMatrix& S , TermMatrix& M) ;

223

/ / ! destructor
~StdComp () { delete fact_p ; }

/ / ! matrix−vector product required : y <− inv (M) *S * x
void MultOPx(Complex *x , Complex * y) ;

private :
/ / ! pointers to internal data o b j e c t s
const LargeMatrix<Complex> *matS_p ;
const LargeMatrix<Real> *matM_p;
/ / ! pointer to temporary f a c t o r i z e d matrix M
LargeMatrix<Real >* fact_p ;

} ; / / end of Class StdComp ===

The modifications concern the type of S and the operands x and y changed to complex. The implementation is
thus quite similar to the StdNonSym one:

/ * !
Assumptions (not checked) :

S complex
M r e a l symmetric p o s i t i v e d e f i n i t e

* /
StdComp : : StdComp(TermMatrix& S , TermMatrix& M)
: ARStdFrame(S) , matS_p(&S . matrixData () −>getLargeMatrix <Complex> ()) ,

matM_p(&M. matrixData () −>getLargeMatrix <Real > ()) {

fact_p = newSkyline (matM_p) ;
l d l t F a c t o r i z e (* fact_p) ;

}
/ / ! Matrix−vector product y <− inv (M) *S * x
void StdComp : : MultOPx(Complex *x , Complex * y) {

array2Vector (x , l x) ;
std : : vector <Complex> Sx (GetN ()) ;
multMatrixVector (* matS_p , lx , Sx) ;

/ / Solve l i ne ar system . Matlab equivalent : l y = matM_p \ Sx ;
(fact_p −> l d l t S o l v e) (Sx , l y) ; / / s t o r e the solution into l y
vector2Array (ly , y) ;

}

One can just mention the initialization of the pointer matS_p to the complex data values. The factorization of
M is unchanged and it should be noticed that here the Cholesky solver handles complex data.
The final step consists in modifying the initial program (A full example. above) by inserting the declaration and
the implementation of the user class StdComp as given above before the main function, and replace the call to
arpackSolve by the three lines:

TermMatrix Sc = toComplex (S) ;
StdComp usrcl (Sc ,M) ;
ArpackProb Arpb (usrcl , nev , "SM") ;

The first statement converts the matrix S to the complex one Sc. Then the object corresponding to the user
class usrcl is created from the complex stiffness matrix and the real mass matrix. The intermediate object Arpb
is created using the second constructor in the list given above. This completely defines the ARPACK problem:
the user class derives from ARStdFrame<complex_t>, so it is a complex standard problem ; the eigenvalues of
smallest magnitude are requested. All the other parameters are the default ones.
The output produced by this last program is the following:

Interpolation degree = 60
computing FE term intg_Omega grad (u) | grad (v) , using 1 threads : done
computing FE term intg_Omega u * v , using 1 threads : done

Number of eigenvalues (requested / converged) : 8 / 8
Computational mode: regular mode (standard problem)

224

Part of the spectrum requested : SM
Problem s i z e = 61 , Tolerance = 1.11022e−16
Nb_iter / Nb_iter_Max = 235 / 800 , Number of Arnoldi vectors = 17

Eigenvalues :
(1.6895427007126359e−10,−5.3921458890663075e−11)
(1.0000000000208538 , −1.1338949016552641e−13)
(4.0000000000304183 ,7.7808203477527148e−12)
(9.0000000000377973 ,1.1273274779629001e−11)
(16.000000000012292 ,2.7943890983902115e−11)
(24.999999999985345 ,1.3070479010254708e−11)
(36.00000000008869 , −3.2309836334379703e−11)
(49.000000000591157 , −2.8194647537903334e−10)

♠ User class example 3.
At last, we can create a user class defining a generalized problem, what we were starting from and thus redoing
in fact what is already done internally when the first calling sequence of the function arpackSolve presented
in the previous section is used. The corresponding user class GenSym is the following:

class GenSym: public ARGenFrame<Real> {
public :

/ / ! constructor
GenSym(TermMatrix& S , TermMatrix& M) ;

/ / ! destructor
~GenSym() { delete fact_p ; }

/ / ! matrix−vector products required : y <− inv (M) *S * x and x <− S * x
void MultOPx(Real *x , Real * y) ;

/ / ! matrix−vector product y <− M * x
void MultBx (Real *x , Real * y) ;

private :
/ / ! pointers to internal data o b j e c t s
const LargeMatrix<Real> *matS_p , *matM_p;
/ / ! pointer to temporary f a c t o r i z e d matrix M
LargeMatrix<Real >* fact_p ;

} ; / / end of Class GenSym ===

Take notice that this class derives from ARGenFrame and in accordance with ARPACK’s requirements for a
real symmetric generalized problem (see the table above), this class provides the two matrix-vector products
MultOPx and MultBx. The implementation is very similar to the StdNonSym’s one:

/ * !
Assumptions (not checked) :

S r e a l symmetric
M r e a l symmetric p o s i t i v e d e f i n i t e

* /
GenSym : : GenSym(TermMatrix& S , TermMatrix& M)
: ARGenFrame(S) , matS_p(&S . matrixData () −>getLargeMatrix <Real > ()) ,

matM_p(&M. matrixData () −>getLargeMatrix <Real > ()) {

fact_p = newSkyline (matM_p) ;
l d l t F a c t o r i z e (* fact_p) ;

}
/ / ! Matrix−vector products y <− inv (M) *S * x and x <− S * x
void GenSym : : MultOPx(Real *x , Real * y) {

array2Vector (x , l x) ;
std : : vector <Real> Sx (GetN ()) ;
multMatrixVector (* matS_p , lx , Sx) ;
vector2Array (Sx , x) ;

/ / Solve l i ne ar system . Matlab equivalent : l y = matM_p \ Sx ;
(fact_p −> l d l t S o l v e) (Sx , l y) ; / / s t o r e the solution into l y

225

vector2Array (ly , y) ;
}
/ / ! Matrix−vector product y <− M * x
void GenSym : : MultBx (Real *x , Real * y) {

array2Vector (x , l x) ;
multMatrixVector (*matM_p, lx , l y) ;
vector2Array (ly , y) ;

}

The constructor’s code is nearly identical to the one of StdNonSym. The function MultOPxcomputes the same
product M−1 S ; it additionally stores Sx in x which is here both an input and an output argument as required
by ARPACK. The function MultBx simply computes the product M x.
Again, the initial program (A full example. above) can be modified by inserting the declaration and the
implementation of the user class GenSym before the main function and replace the call to arpackSolve by:

GenSym usrcl (S ,M) ;
ArpackProb Arpb (usrcl , nev , "SM") ;
EigenElements areigs = arpackSolve (Arpb) ;

The first line creates an object called usrcl by calling the constructor of the user class to which the stiffness
and mass matrices are passed. Then, the intermediate object Arpb is created using the first of the constructors
of the class ArpackProb given above. This completely defines the ARPACK problem: the user class derives from
ARGenFrame<real_t>, so it is a real generalized problem ; the eigenvalues of smallest magnitude are requested
and the symmetric algorithm is chosen (since this is the default).
The output produced by this new program is the following:

Interpolation degree = 60
computing FE term intg_Omega grad (u) | grad (v) , using 1 threads : done
computing FE term intg_Omega u * v , using 1 threads : done

Number of eigenvalues (requested / converged) : 8 / 8
Computational mode: regular inverse mode (generalized problem)
Part of the spectrum requested : SM
Problem s i z e = 61 , Tolerance = 1.11022e−16
Nb_iter / Nb_iter_Max = 443 / 800 , Number of Arnoldi vectors = 17

Eigenvalues :
1.6569854567517169e−10
0.99999999999869593
4.0000000000087512
9.0000000000560245
16.000000000016872
25.000000000006708
36.000000000077279
48.999999999728566

226

9 Post processing and outputs

Once problem is solved, some particular tools may be applied to solution, for instance integral representation,
export to files for graphic visualisation, . . . This chapter is devoted to various post processing of solutions
provided by XLIFE++.

9.1 Integral representation

In the context of integral equation, the solution of IE is a potential on the boundary (Γ). This potential is not
easy to interpret, so the final step of a BEM is often the reconstruction of the field outside Γ. For instance,
the Helmholtz diffraction Dirichlet problem may be solved using a single layer potential q = [∂nu]|Γ and the
diffracted field outside the boundary Γ is given by

u(x) =
∫
Γ

G(x, y) q(y)d y.

XLIFE++ adresses the general form of integral representation :

u(x) =
∫
Γ

opk(G(x, y))⊗opu(q(y))d y.

where opk is an operator on kernel, opu an operator on unknown and ⊗ one of the operation ∗, |, ∧ or %. The
previous exemple corresponds to opk = i d , opu = i d and ⊗=∗. To deal with such integral representation, the
user has to define a linear form from intg constructor:

LinearForm r i =intg (Gamma, G*q) ; / / default integration method

LinearForm r i =intg (Gamma, G*q , Gauss_Legendre , 3) ; / / s p e c i f y i n g quadrature rule

IntegrationMethods ims (Gauss_Legendre , 1 0 , 1 . , Gauss_Legendre , 3) ;
LinearForm r i =intg (Gamma, G*q , ims) ; / / s p e c i f y i n g 2 quadrature r u l e s

In these expressions, Gamma is a Domain object, G a Kernel object and q an Unknown object. Singular inte-
gration method is required if you intend to evaluate the integral representation at points close to the boundary Γ.

The linear form may be a linear combination of intg:

IntegrationMethods ims (Gauss_Legendre , 1 0 , 1 . , Gauss_Legendre , 3) ;
LinearForm r i =intg (Gamma, G*q , ims) + intg (Gamma, (grad_x (G) | _nx) *q , ims)

There are several methods to compute the integral representation.

9.1.1 Direct method

To effectively compute integral representation you have to specify the vector representing the numerical
potential, a TermVector object (say Q) and the points where to evaluate it. There are many way to give points:

• compute at one point x:

LinearForm r i =intg (Gamma, G*q , Gauss_Legendre , 3) ;
Complex val ;
Point x (0 , 0 , 2) ;
integralRepresentation (x , r i ,Q, val) ;

227

• compute at an explicit list of points:

LinearForm r i =intg (Gamma, G*q , Gauss_Legendre , 3) ;
Vector<Point> xs (10) ;
xs (1) = Point (0 , 0 , 2) ; . . .
Vector<Complex> val (10) ;
integralRepresentation (xs , r i ,Q, val) ;

• compute at an implicit list of points of a Domain object (say omega):

LinearForm r i =intg (Gamma, G*q , Gauss_Legendre , 3) ;
Vector<Point> xs ;
Vector<Complex> val ;
integralRepresentation (omega, r i , Q, val , xs) ; / / val and xs are f i l l e d by function

• compute at an implicit list of node points of an interpolation on a Domain:

LinearForm r i =intg (Gamma, G*q , Gauss_Legendre , 3) ;
TermVector U=integralRepresentation (u , omega, r i , Q) ; / / u unknown on a Lagrange space

In the previous syntaxes the type of output val has to be consistent with data. For instance, val
is of complex type if G or Q is of complex type. The last syntax is more robust because the type is

determined by the function. Besides, this syntax returns a TermVector that may be straight exported to a
file for visualization.

Note that, integral representations may return a vector of vectors but not a vector of matrices. For instance, if yo
want to compute the gradient of the integral representation (scalar), write:

Vector<Vector<Complex> > g s l ;
integralRepresentation (xs , intg (Gamma, grad_x (K) *u , ims) , dnU, g s l) ;

or

Unknown us (V , "us" , 2) ; / / vector unknown !
TermVector gSL=integralRepresentation (us , omega, intg (Gamma, grad_x (K) *u , ims) , dnU) ;

In this last form, attach to your TermVector a vector unknown with the dimension of the result.

9.1.2 Matrix method

There exists an other way to deal with integral representations. It consists in computing the matrix

Ri j =
∫
Γ

opk(G(xi , y))⊗opu(τ j (y))d y.

Special functions will produce such matrices embedded in a TermMatrix object:

TermMatrix integralRepresentation (const Unknown&, const GeomDomain&,
const LinearForm&) ;

TermMatrix integralRepresentation (const GeomDomain&, const LinearForm&) ;
TermMatrix integralRepresentation (const std : : vector <Point >&,

const LinearForm&) ;

When no domain is explicitly passed, one shadow PointsDomain object will be created from the list of points
given. When no unknown is explicitly passed, one (minimal) space and related shadow unknown will be created
to represent the row unknown.
The following example (2D diffraction problem) shows how to use this method of integral representation:

228

Number nmesh=25;
Disk disk_int (_center=Point (0 . , 0 . , 0 .) , _radius =1. ,

_nnodes=nmesh, _side_names="Gamma") ;
Disk disk_ext (_center=Point (0 . , 0 . , 0 .) , _radius =2. , _nnodes=2*nmesh,

_domain_name="Omega" , _side_names="Sigma") ;
Mesh mesh(disk_ext −disk_int , _tr iangle , 1 , _gmsh) ;
Domain Gamma = mesh . domain("Gamma") , Sigma = mesh . domain("Sigma") , Omega=mesh . domain("Omega") ;
/ / define spaces , unknown and t e s t f u n c t i o n
Space V0(_domain=Gamma, _interpolation=P0 , _name="V0" , _notOptimizeNumbering) ;
Unknown u0 (V0 , "u0") ; TestFunction v0 (u0 , "v0") ;
Space V1(_domain=Omega, _interpolation=P1 , _name="V1" , _notOptimizeNumbering) ;
Unknown u(V1 , "u") ;
/ / define Kernel and integration method
Kernel H=Helmholtz3dKernel (k) ;
IntegrationMethods ims (Duffy , 8 , 0 . , Gauss_Legendre , 6 , 2 . , Gauss_Legendre , 3) ;
/ / define forms
LinearForm l f = intg (Gamma, g* v0) ; / / rhs l i ne ar form
BilinearForm aSL=intg (Gamma,Gamma, u0*H*v0 , ims) ; / / s i n g l e l a y e r bininear form
LinearForm lSL (intg (Gamma,H*u0 , Gauss_Legendre , 6)) ; / / intg . rep . l in ear form
/ / build system and so lve i t
TermVector rhs (l f) ;
TermMatrix ASL(aSL) ;
TermVector uSL = gmresSolve (ASL , rhs , _tolerance =1.0e−6 , _maxIt=500) ;
/ / intg rep on Omega producing a TermMatrix
TermMatrix R=integralRepresentation (u ,Omega, lSL) ;
TermVector U=R*uSL ;

This method is a little more time expansive than computing directly the integral representation. Thus, if there
are a lot of integral representations to do with different data, it may be of interest. Obviously, it is memory
consuming.

9.1.3 Kernel interpolation method

When points x are far from boundary Γ, an alternate method consists in computing IR by interpolation method.
LetΩ the domain where IR is evaluated and VΩ a Lagrange finite element space of interpolation defined on
Ω. Denote (wi)i the basis functions associated to VΩ space. Let WΓ a Lagrange finite element space defined
on Γ and (τ j) j the basis functions associated to it. Interpolated the kernel at nodes xi ∈Ω and y j ∈ Γ, IR is
approximated by

u(xi) ≈
∫
Γ

∑
i

∑
j

G(xi , y j)wi (x)τ j (y) q(y)d y d x.

If q has the following decomposition q(y) =∑
k qkσk (y) we have :

u(xi) ≈∑
i

∑
j

∑
k

G(xi , y j)wi (x)qk

∫
Γ
τ j (y)σk (y)d y d x

that reads in vector form (U = (u(xi)i), Q = (qk)k) :

U =G∗M∗Q

with G the matrix (G(xi , y j))i j and M the mass matrix :

M j k =
∫
Γ
τ j σk .

This exemple shows how it is done with XLIFE++:

229

Space Vq(_domain=Omega, _interpolation=P0) ; Unknown q(Vq , "q") ;
computation of Q . . .
Space Vo(_domain=Omega, _interpolation=P1) ; Unknown u(Vo , "u") ;
Space Vg(_domain=Gamma, _interpolation=P1) ; Unknown v (Vg , "v") ;
TermMatrix Gi (u , Omega, v , Gamma, G, "Gi") ; / / G(xi , y j)
TermMatrix M(intg (Gamma, q* v) , "M") ; compute(M) ;
TermVector U=Gi * (M*Q) ;

Because kernel is interpolated, the mesh of Ω does not be too coarse. Vg may be chosen equal to Vq. This
method is generally faster than previous ones because computation of the mass matrix is a fast process but
interpolation method fails at points x j too close to the boundary Gamma.

9.2 Output functions

9.2.1 Print objects

Most of the objects appearing in the user main program may be printed in a simple way to the screen or into a
file, using the output operator <<.

BilinearForm a=intg (omega, u* v) ;
TermMatrix A(a , " 'A") ;
compute(A) ;
TermVector Un(omega, u, 1 , " 'U") ;
TermVector X=A*Un;
theCout << "A*un = " << X << eol ; / / print to screen and to the f i l e print . t x t
thePrintStream << "A*un=" << X << eol ; / / print to the f i l e print . t x t

thePrintStream is a XLIFE++ predefined object allowing to print into the file print.txt created in the cur-
rent directory. theCout is a XLIFE++ object allowing to print both to the screen and file print.txt.

See chapter 5 to learn how to manage the verbosity.
In order to print into a specific file, first create an ofstream object, then print to it:

std : : ofstream out (" myfile . dat ") ; / / out i s an ofstream o b j e c t associated
/ / with the f i l e myfile . dat

out << "A*un=" << X << eol ; / / print into t h i s f i l e
out . close () ;

9.2.2 Export TermMatrix and TermVector

We want to exploit easily the data contained in the objects produced during the computation. The objects
concerned are mainly TermVector objects since TermVector is the type of nearly all the computation results
of interest to the user. This may also concern TermMatrix objects if further postprocessing is envisaged.
As mentionned just above, printing objects using the << operator may produce big files containing a lot of
informations, generally used to control the different steps of the computation. But we often need to handle the
data values outside of XLIFE++, either in a raw format or in a specific one corresponding to some particular
software.
The saveToFile commands have been designed for that purpose. They exist in two main forms:

• member function : Object.saveToFile("FileName", options);

• external function : saveToFile("FileName", Object, options);

They behave slightly differently according to the kind of object they act on. Details follow:

TermMatrix object:

230

BilinearForm a=intg (omega, u* v) ;
TermMatrix A(a , " 'A") ; compute(A) ;
A . saveToFile ("A . dat " , _dense) ; / / dense format
A . saveToFile ("A . coo" , _coo , true) ; / / coordinate format
saveToFile ("As . coo" ,A , _coo , true) ; / / works also (external function form)

Only two formats are available:

• dense format (_dense option) : all the matrix coefficients are written, line by line,

• coordinate format (_coo option), which corresponds to the MATLAB/OCTAVE sparse format: only
non zero matrix coefficients are written in the form i j ai j .

When the last argument is set to true (false by default), structure informations are added to the file name.
In the previous example, the file name looks like As(30_30_coo_real_scalar).coo.

TermVector object:

TermVector U1, U2;
. . . computation of U1 and U2 . . .

U1. saveToFile ("U1. dat ") ; / / raw format only
U1. saveToFile ("U1. dat " , true) ; / / raw format , s t r u c t u r e added to name

With the member function form, the only available output format is raw. To select another format, the
external function form should be used:

saveToFile ("U1. dat " ,U1, _raw , true) ; / / idem previous via external function

saveToFile ("U. dat " , U1, U2, _raw) ; / / two TermVectors in the same f i l e
saveToFile ("U. vtk " , U1, U2, _vtk) ; / / idem , export in vtk format
saveToFile ("U. vtu " , U1, U2, _vtu) ; / / idem , export in vtu format
saveToFile ("U.msh" , U1, U2, _msh) ; / / idem , export in msh format
saveToFile ("U.m" , U1, U2, _matlab) ; / / idem , export in Matlab / Octave format
saveToFile ("U. dat " , U1, U2, _xyzv) ; / / idem , export nodes and values

Except the raw format which outputs only data values, all formats embed mesh informations. The
corresponding files are intended to be read by visualization softwares:

• vtk and vtu formats are compatible with PARAVIEW,
• msh format is compatible with GMSH,
• matlab format is compatible with MATLAB and OCTAVE,
• xyzv format produces ascii files with x y z v1 v2 ... on each line.

Because of the geometrical informations involved, different TermVectors which are exported
using one of those formats must be defined on the same space in order to be compared.

231

A mesh can also be exported in vtk, msh or mel format using a command bearing the same
name, saveToFile. This can be useful for conversion from one format to another, or for

visualization purpose.

Mesh demo = . . . ;
demo. printInfo () ; / / pr in ts general information about the mesh to the screen

demo. saveToFile ("demo. vtk " , _vtk , true) ; / / export the mesh in vtk format
demo. saveToFile ("demo.msh" , _msh) ; / / export the mesh in msh format
demo. saveToFile ("demo. mel" , _mel) ; / / export the mesh in melina format

/ / Idem with the external function form :
saveToFile ("demo. vtk " , demo, _vtk , true) ;
saveToFile ("demo.msh" , demo, _msh) ;
saveToFile ("demo. mel" , demo, _mel) ;

The last argument is optional ; ist default value is false. For the vtk and the msh formats, if this
argument is true, a individual file is created for each subdomain or boundary subdomain. In this case,
each filename contains the name of the corresponding subdomain.

9.3 Graphical exploitation

By itself, XLIFE++ is a finite element library and as such does not own any graphical possibilities. At present,
three main softwares are targeted through the ouput formats mentionned in the previous section.

From a practical point of view, in order to obtain a graphical representation of the computation result, one has
to process the output file produced by the saveToFile command by the corresponding software. A minimal
knowledge is required in order to use GMSH and PARAVIEW. We invite the user to refer to the documentation of
these softwares. Most of the computation results shown is this documentation are produced by PARAVIEW and
most of the meshes are displayed using GMSH.

The MATLAB/OCTAVE format is intended to be (easily) used as follows. We assume we have a .m script file, say
eigs_1_Omega.m, containing the first vector computed and related to the domain Omega (maybe an eigenvector
or the solution to a linear system, stored as a TermVector object in both cases). One has to launch MATLAB or
OCTAVE, eventually change to the directory containing the .m file and type in eigs_1_Omega at the prompt (the
execution of the script can also be achieved using the menus if the GUI is available). We thus automatically get
several figures, one showing the mesh based on the interpolation nodes, and one for each component of each
unknown. The user is then free to make further computations using the data present in memory (see below) or
modify the attributes of the figures.

The curves gathered on the figure 8.7 are obtained via this procedure. The corresponding mesh is shown on
figure 9.1.

232

Figure 9.1: Computational domain: [0,π].

Another example with a 2D geometry is shown on figure 9.2.

Figure 9.2: A 2D example.

The script is not interactive except for volumic data: the visualization is made by slicing the 3D domain with a
plane and the user is invited to choose the cutting plane defined by a point and a vector normal to the plane,
shown by a red thick line on the mesh figure. The position of the cutting plane is updated on this figure as its
definition changes and the corresponding slices are displayed in other figures.
Let’s show what the command window looks like in such a case, here with OCTAVE:

GNU Octave , version 4 . 0 . 3
Copyright (C) 2016 John W. Eaton and others .
This i s fr ee software ; see the source code for copying conditions .

. . .

>> what
M− f i l e s in directory /tmp/demo/ x l i f e p p :

eigs_1_Omega .m
>>
>> eigs_1_Omega
The i ntersect ion plane i s defined by the point P and the orthogonal vector V .

Current value of P = 12.566 12.566 12.566
Current value of V = 1 −1 0

1 : change P
2 : change V
0 : quit

Your choice (other value = no change) : 3

233

Current value of P = 12.566 12.566 12.566
Current value of V = 1 −1 0

1 : change P
2 : change V
0 : quit

Your choice (other value = no change) : 0
Tuning suggestions :

f i g u r e (N)
subplot (2 , 2 , k)
rotate3d , grid , box
view (2) , view (3) , view ([Nx Ny Nz])
shading faceted
axis equal , axis normal
set (gca , ' xt ick ' , []) or set (gca , ' xt ick ' , [. . .])
caxis ([. . .])
x label (. . .) , y label (. . .) , t i t l e (. . .)
print (' −dpng ' , eigs_1_OmegaFig2 . png)

>>

Before the user types in 3 to answer the first question, the figure 9.3 has been displayed, showing the domain
mesh and an initial cutting plane. By choosing the value 3, the user accepts the current settings and the figure
9.4 is drawn. The user then terminates by answering 0, and some hints to modify the aspect of the figures are
displayed.

Figure 9.3: Computational domain Omega.

234

Figure 9.4: Data representation corresponding to the selected slice.

When the script has terminated, we can observe the variables present in the workspace:

>> whos
Variables in the current scope :

A t t r Name Size Bytes Class
==== ==== ==== ===== =====

coord 5859x3 140616 double
domaindim 1x1 8 double
domainname 1x5 5 char
elem 4832x8 309248 double
elemtype 4832x1 38656 double
interpDeg 1x1 8 double
spacedim 1x1 8 double
unknown 1x8 8 char
val 5859x1 46872 double

Total i s 66940 elements using 535429 bytes

>> quit

This allows the user to make any processing of his own with these data. The definitions of the variables are the
following:

• coord (real)
Coordinates of the interpolation nodes, one node per row. The nodes are implicitly numbered from 1 to
size(coord,1).

• domaindim (integer)
Dimension of the domain (1, 2 or 3).

• domainname (string)
Name of the domain.

• elem (integer)
Array containing the lists of elements: elem(i,:) is an element of type elemtype(i). Format of the

235

array: one element per row, column i holds the i-th interpolation node, given by its number in the array
coord above.

• elemtype (integer)
Vector containing the type of each element present in the mesh, in the same order as the array elem
above. Each type is a code number in XLIFE++’s internal codification:
2 = point, 3 = segment, 4 = triangle, 5 = quadrangle,
6 = tetrahedron, 7 = hexahedron, 8 = prism, 9 = pyramid.

• interpDeg (integer)
Interpolation degree used during the computation.

• spacedim (integer)
Dimension of the space (1, 2 or 3).

• unknown (string)
1-column array containing the name of the unknowns, or their components in the vector case, one name
per row.

• val (real or complex)
Values corresponding to the unknowns, stored column-wise, one column per component unknown.
Each row contains the value at a node, or in an element if the interpolation degree is 0, in the same
order as the array coord or elem respectively. Indeed, the graphical function ’patch’ used, makes the
correspondence according to the number of rows of this array, which should be size(coord,1) or
size(elem,1) respectively.

• rootfn (string)
Filename of the calling script.

The variables domaindim, domainname, interpDeg and spacedim are defined for information or consistency
check purpose. Indeed, spacedim should equal size(coord,2) and domaindim should be less or equal
spacedim and be consistent with the element types.

236

A External libraries

A.1 How to install BLAS and LAPACK libraries

Using UMFPACK or ARPACK means using BLAS and LAPACK libraries. XLIFE++ offers the ability to choose your
BLAS/LAPACK installation :

• Using BLAS/LAPACK installed with UMFPACK or ARPACK

• Using default BLAS/LAPACK installed on your computer

• Using standard BLAS/LAPACK libraries, such as OPENBLAS.

On MAC OS, you may rely on the distribution provided by your favorite package manager (brew,
port, . . .)

On LINUX, you may rely on the distribution provided by your favorite package manager (apt-get,
yum, rpm, . . .)

On WINDOWS, It is very tricky to install BLAS and LAPACK by yourself, we highly recommend
you to download binary files on the XLIFE++ website to avoid this annoying step

A.2 How to install UMFPACK library

UMFPACK is provided by SUITESPARSE (http://faculty.cse.tamu.edu/davis/suitesparse.html). When
looking how UMFPACK is compiled, it seems that it can depend (maybe in the same way as BLAS/LAPACK) from
other libraries provided by SUITESPARSE.

In the same way, XLIFE++ offers you the ability to choose your UMFPACK installation:

• An old installation of UMFPACK alone (from FORTRAN sources);

• An installation of UMFPACK or SUITESPARSE from your favorite package manager;

On MAC OS, main package managers are brew and port

On LINUX, main package managers are apt-get, yum, rpm, . . .

• An installation of SUITESPARSE sources by yourself. We highly recommend you to choose the release
relying on CMAKE to be build.

237

http://uma.ensta-paris.fr/soft/XLiFE++/?module=main&action=dl
http://faculty.cse.tamu.edu/davis/suitesparse.html

On WINDOWS, we recommend you to download binary files on the XLIFE++ website to avoid
this step.

Theoretically, UMFPACK does not need to use BLAS/LAPACK, but as it is highly recommended by
UMFPACK (for accuracy reasons), XLIFE++ demand that you use BLAS/LAPACK. See above.

A.3 How to install ARPACK library

ARPACK library can be obtained from the following URL: http://www.caam.rice.edu/software/ARPACK/. It
requires BLAS and LAPACK routines. See above.

XLIFE++ uses the wrapper ARPACK++. Because of its deprecation, a patch at http://reuter.mit.
edu/index.php/software/arpackpatch/ needs to be applied to ensure a correct compilation.

With the evolution of compilers, this patch is often not enough now. This is the reason why XLIFE++
contains its own patched release of ARPACK++, used by default.

On MAC OS, you may rely on the distribution provided by your favorite package manager (brew, port,
. . .)

If you use brew, and depending either on your OS or on the version of your compiler (g++ or
clang++), installing ARPACK requires tu use it with BLAS and LAPACK libraries also provided by

brew (OPENBLAS distribution), as default BLAS and LAPACK libraries found by CMAKE are the one
provided by MAC OS. The same problem may occurs if you use the ARPACK library provided by XLIFE++

On LINUX, you may rely on the distribution provided by your favorite package manager (apt-get, yum,
rpm, . . .)

On WINDOWS, we recommend you to download binary files on the XLIFE++ website to avoid this
step.

A.4 How to install MinGW 64 bits on WINDOWS

When you download CodeBlocks, the default compiler is MinGW 32bits. To use the full capabilities of XLIFE++,
you may want to use a 64 bits compiler.
The easiest and safest way to install MinGW-W64 is to avoid the use of an installer and to download the bina-
ries directly from the url from the https://sourceforge.net/projects/mingw-w64/files/Toolchains%
20targetting%20Win64/Personal%20Builds/mingw-builds/. You select the version you need, for instance
7.3.0. You click on "threads-posix" directory, on one of the directories (sjlj, seh, . . .). Personnally, I would choose
the directory having the best download rate per week. Finally, you click on the archive to donwload it.

238

http://uma.ensta-paris.fr/soft/XLiFE++/?module=main&action=dl
http://www.caam.rice.edu/software/ARPACK/
http://reuter.mit.edu/index.php/software/arpackpatch/
http://reuter.mit.edu/index.php/software/arpackpatch/
http://uma.ensta-paris.fr/soft/XLiFE++/?module=main&action=dl
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/

B Utility types in details

The utils library collects all the general classes and functionalities required by the code : extended string
capabilities, Point, Vector and Matrix (dense storage) objects, Parameters and Function objects to deal
with user functions, Timer providing time computation tools and more internal useful classes intended mainly
to developers (messages and traces management).

B.1 String, Strings

String is a nice class allowing to deal with char of arrays without managing the memory. String is no more
than an alias to the string class of the STL which is either standard string (utf8, by default) or wide string (utf16);
this choice is made in the config.hpp header file by setting the macro WIDE_STRING. When this macro changes,
all the library has to be rebuilt!

As a string or wstring class of the STL, String proposes all the functionalities of std::string. Mainly, you can
create, concatenate string, access to char and find string in string:

String s1 ("a s t r i n g ") ; / / c r e a t e a String
String s2="an other s t r i n g " ; / / c r e a t e a String using =
String s12=s1+" and "+s2 ; / / concatenate String , s3 ="a"+"b" does not work !
s1+=" and "+s2 ; / / concatenate String , now s1 i s the same as s12
int l =s1 . s i z e () ; / / number of char of s1 , s1 . length () g i v e s the same
char a=s1 [3] ; / / char a= ' t ' (the fourth character)
s1 [3]=p ; / / now s1 ="a spring and an other s t r i n g " ;
int p=s1 . find (" s t r i n g " , 0) ; / / f ind f i r s t posit ion of " s t r i n g " from beginning (i f p=−1 not

found)
s1 . replace (p, 5 , " spring ") ; / / replace " s t r i n g " by " spring "
s2=s1 . substr (p , 5) ; / / e x t r a c t s t r i n g of length 5 from posit ion p
s1 . compare(s2) ; / / alphanumeric comparison , return 0 i f equal ,

/ / a negative (p o s i t i v e) value i f s1 <s2 (s1 >s2)
char * c=s1 . c _ s t r () ; / / return pointer to the char array of the s t r i n g

There a lot of variations of these string functions and other functions; see the STL documentation.

Some additional functions which may be useful have been introduced:

template<typename T_>
String tostring (const T_& t) ; / / ' anything ' to String
template<typename T_>
T_ stringto (const String& s) ; / / String to ' anything '
/ / returns String converted to lowercase
String lowercase (const String &) ;
/ / returns String converted to uppercase
String uppercase (const String &) ;
/ / returns String with i n i t i a l converted to uppercase
String c a p i t a l i z e (const String &) ;
/ / trims leading white space from String
String trimLeading (const String &) ;
/ / trims t r a i l i n g white space from String
String trimTrailing (const String &) ;
/ / trims leading and t r a i l i n g white space from String

239

String trimSpace (const String &) ;
/ / d e l e t e a l l white space from String
String delSpace (const String& s) ;
/ / search c a p a b i l i t i e s
int findString (const String , const std : : vector <String >&) ;

Be cautious with template conversion functions. The template T_ type has to be clarified when invoking stringto.

/ / examples of conversion s t r i n g t o
String s="1 2 3" ;
int i =stringto <int >(s) ; / / i =1
Real r=stringto <Real >(s) ; / / r =1.
Complex c=stringto <Complex>(s) ; / / c = (1 . , 0)
void * p=stringto <void * >(s) ; / / p=0x1
String ss=stringto <String >(s) ; / / s s ="1"
s=" (0 , 1) " ;
c=stringto <Complex>(s) ; / / c = (0 . , 1 .)

Besides, lists of strings are available using Strings:

/ / l i s t of s t r i n g s
Strings ss ("x=0" , "x=1" , "y=0" , "z=0") ; / / i n i t i a l i z e l i s t (up to 5 elements)
Strings l s (10) ; / / 10 empty s t r i n g s
l s (1) ="x=0" ; / / access to f i r s t s t r i n g of l i s t
String s=ss (3) ;
cout<<ss ; / / output l i s t

Strings inherits from std::vector<String>.

B.2 Int, Dimen, Number, Numbers

Int is a nice datatype allowing to deal with signed integers properly, whatever the OS (Windows, Unix/Linux,
Mac OS) and the architecture (32/64 bits), so that an Int is 32 bits on 32 bits architectures and 64 bits on 64
bits architectures. Number is defined in the same way as Int, but for unsigned integers. Dimen is defined in the
same way as Int and Number, but for short unsigned integers.
In fact, Int is no more than an alias to long int on 32 bits architectures and long long int on 64 bits
architectures. Dimen is an alias of unsigned short int, and Number is an alias of size_t. As a result, Int and
Number follows both the architecture.
This choice is made in the config.hpp header file automatically.

Number datatype is the most often used for the user, so that we defined Numbers to manage lists of Number,
facilitating geometries definitions for instance:

/ / l i s t of numbers
Numbers ns (10 ,11 ,12 ,13) ; / / i n i t i a l i z e l i s t (up to 20 elements)
ns (1) =11; / / access to f i r s t number of l i s t
Number n=ns (3) ;
cout<<ns ; / / output l i s t

Numbers inherits from std::vector<Number>

B.3 Real, Complex and Reals

Real is a nice datatype allowing to deal with floats, whatever the precision. Real is no more than an alias to
float, double or long double; this choice is made in the config.hpp header file by setting the corresponding

240

macro: STD_TYPES, LONG_TYPES or LONG_LONG_TYPES. When you change the macro, all the library has to
be rebuilt!

Complex is no more than an alias to std::complex<Real>.
To facilitate geometries definitions, Reals manages lists of Real:

/ / l i s t of s t r i n g s
Reals rs (2 . 5 , − 3 . , 0 . 1) ; / / i n i t i a l i z e l i s t (up to 10 elements)
Reals l s (10) ; / / 10 r e a l s equal to zero
l s (1) = 3 . 7 ; / / access to f i r s t r e a l of l i s t
Real r=rs (3) ;
cout<<rs ; / / output l i s t

Reals inherits from std::vector<Real>.

B.4 Angle unit

XLIFE++ uses radian as reference angle unit. As a consequence, you have to give angles expressed in radian
unit and angles are also returned or printed in radian unit. However, it is possible to pass angles in degree unit
using the following syntax processing the degree to radian conversion:

Real angle = 45*deg_ ; / / angle contains pi / 4 !

B.5 Point

A finite element library deals obviously with points. The purpose of the Point class is to deal with points in any
dimension and providing some algebraic operations on points and comparison capabilities. This class is used
by the Function class encapsulating user functions.

There are mainly four ways to construct a point:

Point p4 (4 , 0 .) ; / / dimension (4) and value (0) p1 =(0 ,0 ,0 ,0)
Point p1 (2 .) ; / / a 1D point p1=(2) ;
Point p2 (1 . , 0 .) ; / / a 2D point p1 =(1 ,0) ;
Point p3 (1 . , 0 . , 1 .) ; / / a 3D point p1 =(1 ,0 ,1) ;
Real v [] = { 1 , 2 , 3 } ; / / array of r e a l _ t
Point p4 (3 , v) ; / / dimension and r e a l _ t array
std : : vector <Real> w(3 , 0) ; / / the std : vector (0 , 0 , 0)
Point p5 (w) ; / / s t l vector

To access to:

• the dimension n of a point p: p.size(),

• to the i-th coordinate (1 ≤ i ≤ n) of a point p: p(i) or p[i−1]

• to the x,y or z coordinate (restricted to n ≤ 3): p.x(), p.y() or p.z()

• the vector storing the point: p.toVect();

You can use the coordinate accessors in reading or writing mode. A simple example:

Point p (1 . , 0 . , 1 .) ; / / a 3D point p=(1 ,0 ,1) ;
p(1) =2; / / modify the f i r s t coordinate
p . y () = 3 . ; / / modify the second coordinate
std : : vector <Real> v=p . toVect () ; / / convert point to vector

241

Using standard operators (+=, -=, +, -, * and /), it is possible to perform algebraic computations on points up to
linear combinations:

Point p (1 . , 0 . , 1 .) ,q (0 . , 0 . , 1 .) , r (1 . , 2 . , 3 .) ; / / some 3D points
Point g=(p+q+r) / 3 ; / / compute the barycenter of p , q , r
(p+=q) /=2; / / p contains the middle of p and q

Besides, there are some functions to compute the distance or the square of distance between two points:

Point p (1 . , 0 . ; 1 .) ,q (0 . , 0 . , 1 .) , r (1 . , 2 . , 3 .) ; / / some 3D points
r e a l _ t d=p . distance (q) ; / / compute distance between p and q
d=pointDistance (p , q) ; / / a l t e r n a t i v e syntax
d=p . squareDistance (q) ; / / square of the distance between p and q
d=squareDistance (p , q) ; / / a l t e r n a t i v e syntax

Finally, comparing points is possible using standard operators ==, !=, <, >, <= or >=. The comparison uses a
tolerance factor τ defined by the variable Point::tolerance (p,q being points of Rn):

p == q if |p −q| ≤ τ
p < q if ∃i ≤ n, ∀ j < i , |p j −q j | ≤ τ and p j < q j −τ.

The other comparison operators !=, >, <= or >= are naturally defined from == and < operators. By default, the
tolerance is set to 0. Below is an example:

Point p (1 . , 0 . , 1 .) ,q (0 . , 0 . , 1 .) ; / / some 3D points
bool r =(p==q) ; / / r= f a l s e
r =(p! =q) ; / / r=true
r =(p<q) ; / / r= f a l s e
Real eps =.00001;
Point : : tolerance=eps ; / / change the tolerance f a c t o r to eps
r =(p==(p+eps /2)) ; / / r=true

Geometrical transformations on points work as on geometries. Please see section 6.2 for definition and use of
transformations routines.
Then, if you want to create a new Point by applying a transformation on a Point, you should use one of the
following functions instead:

/ / ! apply a geometrical transformation on a Point (external)
Point transform (const Point& p , const Transformation& t) ;
/ / ! apply a translat ion on a Point (external)
Point translate (const Point& p , std : : vector <Real> u = std : : vector <Real > (3 , 0 .)) ;
Point translate (const Point& p , Real ux , Real uy = 0 . , Real uz = 0 .) ;
/ / ! apply a rotation 2d on a Point (external)
Point rotate2d (const Point& p , const Point& c = Point (0 . , 0 .) , Real angle = 0 .) ;
/ / ! apply a rotation 3d on a Point (external)
Point rotate3d (const Point& p , const Point& c = Point (0 . , 0 . , 0 .) , std : : vector <Real> u =

std : : vector <Real > (3 , 0 .) , Real angle = 0 .) ;
Point rotate3d (const Point& p , Real ux , Real uy , Real angle) ;
Point rotate3d (const Point& p , Real ux , Real uy , Real uz , Real angle) ;
Point rotate3d (const Point& p , const Point& c , Real ux , Real uy , Real angle) ;
Point rotate3d (const Point& p , const Point& c , Real ux , Real uy , Real uz , Real angle) ;
/ / ! apply a homothety on a Point (external)
Point homothetize (const Point& p , const Point& c = Point (0 . , 0 . , 0 .) , Real f a c t o r = 1 .) ;
Point homothetize (const Point& p , Real f a c t o r) ;
/ / ! apply a point r e f l e c t i o n on a Point (external)
Point pointReflect (const Point& p , const Point& c = Point (0 . , 0 . , 0 .)) ;
/ / ! apply a r e f l e c t i o n 2 d on a Point (external)
Point reflect2d (const Point& p , const Point& c = Point (0 . , 0 .) , std : : vector <Real> u =

std : : vector <Real > (2 , 0 .)) ;

242

Point reflect2d (const Point& p , const Point& c , Real ux , Real uy = 0 .) ;
/ / ! apply a r e f l e c t i o n 3 d on a Point (external)
Point reflect3d (const Point& p , const Point& c = Point (0 . , 0 . , 0 .) , std : : vector <Real> u =

std : : vector <Real > (3 , 0 .)) ;
Point reflect3d (const Point& p , const Point& c , Real ux , Real uy , Real uz = 0 .) ;

For instance:

Point p1 ;
Point p2=translate (p1 , 0 . , 0 . , 1 .) ;

B.6 Vector

The purpose of the Vector class is mainly to deal with complex or real vector. In particular, this class is used in
the definition of the user functions (see the section Function). It is a templated class mainly used as a real or
complex vector:

Vector<Real> u ; / / u = [0 .]
Vector<Real> v (3) ; / / v = [0 . 0 . 0 .]
Vector<Real> w(3 , 2 . 5) ; / / w=[2.5 2.5 2 . 5]
Vector<Complex> cu ; / / cu = [(0 . , 0 .)]
Vector<Complex> cv (3) ; / / cv = [(0 . , 0 .) [(0 . , 0 .) (0 . , 0 .)]
Complex i (0 , 1) ; / / the complex i
Vector<Complex> cw(3 , i) ; / / cv = [(0 . , 1 .) [(0 . , 1 .) (0 . , 1 .)]

It is also possible to deal with vector of vectors, for instance:

Vector<Real> ones (3 , 1) ; / / ones = [1 . 1 . 1 .]
Vector<Vector<Real> > U(4 , ones) ;

/ / U= [[1 . 1 . 1 .] [1 . 1 . 1 .] [1 . 1 . 1 .] [1 . 1 . 1 .]]

To access to a vector component (both read and write access) use the operator () with index from 1 to the vector
length:

Vector<Real> v (3) ; / / v = [0 . 0 . 0 .]
v (1) = 1 . ; v (2) = 2 . ; v (3) = 3 . ; / / v = [1 . 2 . 3 .]
Vector<Complex> cv (3) ; / / cv = [(0 . , 0 .) [(0 . , 0 .) (0 . , 0 .)]
cv (2) =Complex(1 , 1) ; / / cv = [(0 . , 0 .) [(1 . , 1 .) (0 . , 0 .)]

Note that access using operator [] with index from 0 to the vector length -1, is also possible. Advanced users can
use member functions begin and end returning respectively iterators (or const iterators) to the beginning and
the end of the vector.

It is also possible to extract some vector components in a new vector or to set some vector components by
specifying a set of indices either given by lower and upper indices or given by a vector of indices:

Vector<Real> v (5) ; / / v = [0 . 0 . 0 . 0 . 0 .]
for (Number i =1; i <=5; i ++)

v (i) = i * i ; / / v = [1 . 5 . 9 . 16. 2 5 .]
Vector<Real> w=v (3 , 5) ; / / w = [9 . 16. 2 5 .]
Vector<Number> i s (3) ;
i s (1) =1; i s (2) =3; i s (3) =5; / / i s =[1 3 5]

w=v (i s) ; / / w = [1 . 9 . 2 5 .]
v . set (1 , 3 ,w) ; / / v = [1 . 9 . 25. 16. 2 5 .]
Vector<Real> z (3 , 0 .) ; / / w = [0 . 0 . 0 .]
v . set (is , z) ; / / v = [0 . 9 . 0 . 16. 0 .]

243

Standard algebraic operations (+=,-=,*=,/=,+,-,*,/) are supported by the Vector. Some shortcuts are also possible,
for instance a vector plus a scalar, a scalar plus a vector, ... Here are a few examples:

Vector<Real> u(3 , 1) ; / / u= [1 . 1 . 1 .]
Vector<Real> v (3) ; / / v = [0 . 0 . 0 .]
v = 2 . ; / / v = [2 . 2 . 2 .]
Vector<Real> w=u+v ; / / v = [3 . 3 . 3 .]
w=2.* v ; / / v = [4 . 4 . 4 .]
w−=2. ; / / v = [2 . 2 . 2 .]
Complex i (0 , 1) ; / / complex number
Vector<Complex> cv (3 , i) ; / / cv = [(0 . , 1 .) [(0 . , 1 .) (0 . , 1 .)]
cv=cv * i ; / / cv = [(− 1 . , 0 .) [(− 1 . , 0 .) (− 1 . , 0 .)]
cv / = 2 . ; / / cv = [(− 0 . 5 , 0 .) [(0 . 5 . , 0 .) (0 . 5 . , 0 .)]

For algebraic operations involving two vectors, the compatibility of the size of vectors is checked. All the
algebraic operations involving a real vector (resp. a complex vector) and a real scalar (resp. a complex scalar)
are supported. Be cautious, as an integer value is not always certainly cast to a real value, some operations may
be failed during the compiling process. For instance, the addition between a real vector and an integer does not
work, cast explicitly to a real!

Vector<Real> u(3 , 1) ; / / u= [1 . 1 . 1 .]
Vector<Real> v (3) ; / / v = [0 . 0 . 0 .]
v=u+2; / / DOES NOT WORK
v=u + 2 . ; / / v = [3 . 3 . 3 .]

Automatic cast from real vector to complex vector is supported. For instance, the following instructions are
legal:

Complex i (0 , 1) ; / / complex number i
Vector<Real> u(3 , 1) ; / / u= [1 . 1 . 1 .]
Vector<Complex> cv (3) ; / / cv = [(0 . , 0 .) [(0 . , 0 .) (0 . , 0 .)]
cv=u+2.* i ; / / cv = [(1 . , 2 .) [(1 . , 2 .) (1 . , 2 .)]
cv * = 3 . ; / / cv = [(3 . , 6 .) [(3 . , 6 .) (3 . , 6 .)]

Be cautious, automatic cast is not supported for vector of vectors.

The class also provides some various functionalities:

Vector<Real> u(3 , 1) ; / / u= [1 . 1 . 1 .]
u . norminfty () ; / / the sup norm of u
u . norm2squared () ; / / squared quadratic norm of u
u .norm2() ; / / quadratic norm of u
cout<<u ; / / output the vector u : [1 1 1]
Vector<Complex> cv (3 , i) ; / / cv = [(0 . , 1 .) [(0 . , 1 .) (0 . , 1 .)]
conj (u) ; / / conjugate of cv
cv=cmplx (u) ; / / transform a r e a l vector in a complex one
u=real (cv) ; / / take the r e a l parts
u=imag(cv) ; / / take the imaginary parts

Contrary to the Point class, the Vector class offers no comparison function. Note also that there is no link
between these two classes except that a Point may be automatically constructed from a Vector:

Vector<Real> u(3 , 1) ;
Point P=u ;

To avoid explicit templates in user program, the following aliases are provided:

• Reals or RealVector stands for Vector<Real>,
• Complexes or ComplexVector stands for Vector<Complex>,
• RealVectors stands for Vector<Vector<Real> >,
• ComplexVectors stands for Vector<Vector<Complex> >.

244

B.7 Matrix

The purpose of the Matrix class is mainly to deal with complex or real dense matrices. In particular, this class is
used in the definition of the user functions (see the section Function). This class is compliant with the Vector
class. Although, it can deal with matrices of anything, it is only fully functional for real or complex matrices:

Matrix<Real> rA ; / / an empty matrix
Matrix<Real> rB (3 , 2) ; / / a 3×2 zeros matrix
Matrix<Real> rC (3 , 2 , 1) ; / / a 3×2 ones matrix
Vector<Real> w(3 , 2 . 5) ; / / w=[2.5 2.5 2 . 5]
Complex i (0 , 1) ; / / the complex i
Matrix<Real> cA (3 , 2 , i) ; / / a 3×2 i matrix

It is possible to construct diagonal matrix from a Vector or a matrix from a Vector of Vector, to load (and
save) a matrix from a file and to construct particular matrices (_zeroMatrix, _onesMatrix, _idMatrix,
_hilbertMatrix):

Vector<Real> u (3 , 2 .) ; / / vector [2 . 2 . 2 .]
Matrix<Real> rA (u) ; / / 3×3 matrix with u as diagonal
Matrix<Real> rB ("mat . dat ") ; / / matrix loaded from "mat . dat " f i l e
Matrix<Real> rO (3 , _zeroMatrix) ; / / a 3×3 zeros matrix
Matrix<Real> r1 (3 , _onesMatrix) ; / / a 3×3 ones matrix
Matrix<Real> r I (3 , _idMatrix) ; / / a 3×3 i d e n t i t y matrix
Matrix<Real> rH(3 , _hilbertMatrix) ; / / the 3×3 Hilbert matrix

Construction of complex matrix from real data are allowed (automatic cast). But the contrary is not.

There are some functions to access to the matrix properties:

numberOfRows () , numberOfColumns ()
isSymmetric () , isSkewSymmetric () , i s S e l f A d j o i n t () , isSkewAdjoint ()

ans some utilities to access to a coefficient, a row or a column or the diagonal of the matrix :

Matrix<Real> A(2 , 2 , 1) ; / / a 2×2 ones matrix
A(1 , 1) = 2 . ; / / change the c o e f f i c i e n t A11
Vector<Real> r=A . row(1) ; / / f i r s t row of A
r=A . column(2) ; / / second column of A
r=A . diag () ; / / diagonal of A
A . column(1 , r) ; / / assign a vector to the f i r s t column
A . row(2 , r) ; / / assign a vector to the second row
A . diag (r) ; / / assign a vector to the diagonal

All these functions support automatic cast from real to complex but not the contrary.

Advanced users can use member functions begin() and end() returning respectively iterators (or const itera-
tors) to the beginning and the end of the Matrix. The data values of the matrix are stored according to the C
convention, i.e. row-wise.

There are also generalized access tools either to extract submatrix (get() or operator()) or to set submatrix of
matrix (set()):

Matrix<Real> M(3 , 3) ;
for (Number i =1; i <=3; i ++)

for (Number j =1; j <=3; j ++)
M(i , j) = i + j ; / /M=[2 3 4 ; 3 4 5 ; 4 5 6]

245

Matrix<Real> N= M. get (2 , 3 , 2 , 3) ; / /N=[4 5 ; 5 6]
/ /N=M(2 , 3 , 2 , 3) g i v e s the same
Vector<Number> i s (2) ;
i s (1) =1; i s (2) =3;

N= M. get (is , i s) ; / /N=[2 4 ; 4 6]
/ /N=M(is , i s) g i v e s the same
Matrix<Real> Z(2 , 2 , 0) ; / / Z=[0 0 ; 0 0]

M. set (1 , 2 , 1 , 2 ,Z) ; / /M=[0 0 4 ; 0 0 5 ; 4 5 6]
Matrix<Real> U(2 , 2 , 1) ; / /U=[1 1 ; 1 1]

M. set (is , is , Z) ; / /M=[1 0 1 ; 0 0 5 ; 1 5 1]

Other syntaxes are proposed, see the developer’s documentation.

Besides, the Matrix class proposes some transformations either as internal functions or external functions:

Matrix<Real> A(2 , 2 , 1) ,B ;
Matrix<Complex> C(2 , 2 , i) ,D;
A . transpose () ; / / s e l f transposit ion of A
B=transpose (A) ; / / t ransposit ion of A , A not changed
C. adjoint () ; / / s e l f transposit ion and conjugate C
D=adjoint (A) ; / / transpose and conjugate , C not changed
B=diag (A) ; / / from diagonal of A to a diagonal matrix
A=real (C) ; / / r e a l part of C
B=imag(C) ; / / imaginary part of C
D=conj (C) ; / / conjugate of C
D=cmplx (A) ; / / forced casting from r e a l to complex
Real n2=norm2(A) ; / / Frobenius norm
Real ninf=norminfty (A) ; / / i n f i n i t e norm

Standard algebraic operations (+=,-=,*=,/=,+,-,*,/) are supported by the Matrix class. Some shortcuts are also
possible, for instance a matrix plus a scalar, a scalar plus a matrix, ... Automatic cast from real to complex is
supported. There is no comparison operator.

The Matrix proposes some solvers:

Matrix<Real> A
RealVector B ;
. . .
/ / s o l ve AX=B or AXs=Bxs using Gauss reduction
gaussSolver (A , B, piv , row) ;
gaussMultipleSolver (A , B, nbrhs , piv , row) ;
/ / inverse of a square matrix
RealMatrix invA=inverse (A) ;
/ / QR f a c t o r i z a t i o n
RealMatrix Q, R ;
qr (A ,Q, R) ;
/ / SVD f a c t o r i z a t i o n A= U S V* , i f A a (m, n) −matrix , U i s a (m, r) −matrix , V a (n , r) −matrix and S

a r −vector where r=min(m, n)
RealMatrix U, V ;
RealVector S ; / / s ingular values
svdMat (A , U, S , V) ;

QR and SVD are available only if EIGEN library is set on.

246

It is also possible to deal with matrix of matrices, for instance:

Matrix<Real> ones (2 , 2 , 1) ; / / a 2×2 ones matrix
Matrix<Matrix<Real> > A(2 , 2 , ones) ; / / a 2×2 matrix of 2×2 ones matrix

but all operations are not supported for such matrices!

To avoid explicit templates in user program, the following aliases are provided:

RealMatrix stands for Matrix<Real>,

ComplexMatrix stands for Matrix<Complex>.

RealMatrices stands for Matrix<Matrix<Real> >,

ComplexMatrices stands for Matrix<Matrix<Complex> >.

B.8 Parameters

In order to attached some user’s data to anything (in particular functions), two classes (Parameter and
Parameters) are proposed. The Parameter class handles a single data of type integer, real, complex, string,
real/complex vector/matrix or void * with the possibility to name the parameter. The Parameters class handles
a list of Parameter objects.

B.8.1 The Parameter object

It is easy to define a parameter by its constructor or the assignment operation:

Parameter p(value , [name]) ;
Parameter p=value ;

where value is of type integer, real, complex, string (or char*), RealVector, ComplexVector, RealMatrix, Complex-
Matrix or void * and name is an optional string defining the parameter name.

Once a parameter is set, it is possible to get its name (if defined), its type, its value and print it:

Parameter k (1 . , " frequency ") ;
cout<<"parameter "<<k .name() <<" type "<<k . type () <<" value="<<real (k) ;
k . print () ; / / print name and value
cout<<k ; / / print only i t s value
RealMatrix H(5 , _hilbertMatrix) ; / / h i l b e r t matrix 5x5
Parameter mat(H, " Hilbert matrix ") ; / / H as parameter

The use of type void * allows the user to deal with data of any kind. This nice possibility is for advanced users
because a void * variable is unsafe in C++:

l i s t <String > l s t ; / / a l i s t of s t r i n g
l s t . push_back ("Helmholtz") ; l s t . push_back (" Laplace ") ;
Parameter par(& l s t , "problem l i s t ") ; / / void * parameter
cout<<par ; / / print the pointer not the l i s t
l i s t <String > >& r l s t = s t a t i c _ c a s t < l i s t <String >&>(*pointer (par)) ; / / be sure ! ! !
/ / or
l i s t <String > >& r l s t = s t a t i c _ c a s t < l i s t <String >&>(*par . get_p ()) ; / / be sure ! ! !
cout<< r l s t ; / / print the l i s t not the pointer

The functions to get the value are integer(), real(), cmplx(), string() and pointer(). Be cautious, the user must invoke
the "get" function compatible with the parameter type. In case of misfit call, an error may occur or not if a
logical cast is possible (only integer to real and real to complex).

247

Parameter k (1 . , " frequency ") ; / / a r e a l parameter
Real r=real (k) ; / / compatible get
Complex c=cmplx (k) ; / / no compatible get , but ca s t r e a l to complex
String s=string (k) ; / / no compatible get , e rro r
void * q=pointer (k) ; / / no compatible get , e rro r

A Parameter object can be automatically cast to its right value:

Parameter k (1 . , " frequency ") ; / / a r e a l parameter
Parameter i (complex_t (0 , 1) , " i ") ; / / a complex parameter
Parameter mat(RealMatrix (5 , _hilbertMatrix) , " Hilbert matrix ") ; / / a matrix parameter
Real r=k ; / / auto c as t to r e a l
r=k ; / / auto c as t to r e a l
Complex c=k ; / / auto c as t to complex
c= i ; / / does not work ! ! ! cannot r e s o l v e ambiguity of complex c l a s s
c=k ; / / complex−> complex , double −> complex
String s=string (k) ; / / error , incompatible types
void * q=pointer (k) ; / / error , incompatible types
RealMatrix H=mat ; / / ok

For numerical type parameters (integer, real or complex), it is possible to apply algebraic operations (+=, -=, *=,
/=,+ , -, *, /), comparison operations (==, !=, >, >=, <, <=). The result is a Parameter. These operations do not yet
work on vectors and matrices.

Parameter k (1 . , " frequency ") ;
Parameter k2=k*k ;

B.8.2 The Parameters object: list of Parameter

The Parameter object is a brick of the more interesting class Parameters which handles a list of Parameter.
With this class, the user is able to deal with lists of anything of the type of numerics (integer, real, complex,
vector, matrix) or string type or pointer type. In particular, these parameters lists can be attached to functions
as Parameters object of the function (see the class Function documentation).

A Parameters object is simply defined by constructors taking one explicit data of type supported by the
Parameter class or one Parameter object:

Parameters ps (value , [name]) ;

where value is of type integer, real, complex, real/complex vector/matrix, string (or char*) or void * and name is
an optional string defining the parameter name. When value is a Parameter object, name is not required.

The main operations on the list are the insertion and the extraction of parameter values. To insert a parameter
in the list, you can use the push() function or the stream operator << :

Parameters ps ;
ps . push (param) ;
ps<<value ;

where value is of type integer, real, complex, string (or char*), void * or is a Parameter object.
For instance :

Parameters params (2 . , "k") ; / / i n i t i a l i z e from one data
params<<Parameter (1 . , "rho") <<Parameter (3 . , "eps") ; / / i n s e r t 2 r e a l
params< <3.1415926; / / i n s e r t a r e a l with no name get i t by i t s index (4)
params<<Parameter (RealVector (5 , 1 .) , "v") ; / / i n s e r t a vector
params<<Parameter (RealxMatrix (5 , _hi lbertMatrix) , "H") ; / / i n s e r t a matrix

248

To extract a parameter from the list, you have to use the direct access operator () specifying its rank (from 1) in
the parameters list or its parameter name or the parameter itself:

Parameter p=ps (i) ; / / i i s an i n t e g e r index
Parameter p=ps (name) ; / / name i s a s t r i n g
Parameter p=ps (q) ; / / q i s a parameter

If a parameter has no name (case of a value insertion with no name) a default name is given (parameterx with x
its rank in the list)! To get the value of the parameter, capabilities of the Parameter class may be used. It also
possible to use the assignment operator = :

Parameters params ;
Real k=params ("k") . get_r () ; / / use get with name
Real rho=params ("rho") ; / / work also
Real pi=params (4) ; / / no name available
RealVector v=params ("v") ; / / get vector
RealMatrix H=params ("H") ; / / get matrix

where value_type is the type of the parameter (be cautious with type compatibility).

This class provides print facilities of a list of parameters:

Parameters params ;
params . print () ; / / print on a default print f i l e
params . print (out) ; / / out i s an output stream
out << params ;

Finally, the class provides a void list of parameters: Parameters::default_Parameters.

An example:

Parameter height =3;
Parameters data ;
data << height << Parameter (4 , "width") << " case 1" << 1 . 5 ;
/ / String " case 1" has default name " parameter3 "
/ / Real_t " 1 . 5 " has default name " parameter4 "
Parameter a=data (" height ") ; / / acces by name, contains height
Parameter c=data (4) ; / / acces by rank , contains 1.5
data (1) =2; / / replace the value 3 by 2
data (" height ") =2; / / same e f f e c t , height i s t h e r e a f t e r modified
data (height) =2; / / same e f f e c t
double x=data (4) ; / / x contains 1.5
x=data ("width") ; / / x contains 4

Note that there is no possibility to delete a parameter of the list and, contrary to the Parameter class, no algebraic
operations may be performed on list of parameters.

B.9 Function

In order to deal with functions with parameters of any kind it is necessary to use an object function which is
related to a Parameters object (a list of parameters, see Parameters documentation). This approach allows to
pass friendly, at low level of the code, some user’s functions, say functions defined in the main program.

B.9.1 User function and object function

When you want to deal with the integral term:∫
Ω

e i kx u(x, y, z) v(x, y, z)dΩ,

249

where the loop of finite element computation requires the computation of the function f (x) = e i kx on quadra-
ture points, it is necessary to pass the function f to the low-level code where the finite element loop is im-
plemented. Most functions are function of a point or a list of points. So, only four kinds of function are
concerned:

• function of a n-dimensional point (see B.5 for the class Point);

• function of two n-dimensional points, usually named kernel;

• function of a vector of n-dimensional point;

• function of two vectors of n-dimensional points.

The functions may also have a Parameters as input argument if necessary (default value); for example, the real
k in the previous example. The output argument may be of any type (real, complex, vector, matrix, ...), but has
to be compatible which the type required in computation.
The way to define such a function is the following. First, define a standard C++ function, for instance:

Complex f (const Point & P , Parameters& pa = default_Parameters)
{
Real k=pa (1) ; / / k i s the f i r s t parameter of the parameter ' s l i s t pa
/ / Real k=pa (" k ") ; i s available i f your have a parameter with name "k"
Real x=P(1) ; / / x i s the f i r s t coordinate of the point P
return exp (i *k* x) ; / / return a complex value r e s u l t ,
/ / return exp (i *pa (1) *P(1)) ; i s also p o s s i b l e
}

Then create in your main program a Parameters object, a Function object from C++ function and you
Parameters object:

{
Parameters pars (1 , "k") ;
Function F(f , pars) ;

}

If you have to deall with the integral term involving a real value matrix (with no parameter involved in this
example): ∫

Ω
A∇u .∇v dΩ,

you may define:

Matrix<Real> A(const Point & P , Parameters& pa = default_Parameters)
{

Matrix<Real> vA (3 , 3) ;
. . .
return vA ;

}

Note that even if your function does not involve some parameters, the second argument of type
Parameters is mandatory in the function definition.

For a kernel type function, it is quite similar. You have to specify two points as input arguments:

250

Complex Green_Helmholtz_3D (const Point& M, const Point& P , Parameters& pa = default_Parameters)
{

Real r=distance (M, P) ; / / we assume a distance function e x i s t s
Real k=pa (1) ;
Real eps=pa (2) ;
i f (r >eps) return exp (i *k* r) / r ;
else . . .

}

The vector form of a Function is a function working with a vector of points and returning a vector of results
(values on each point). It may be useful when computing n values together is really faster than computing n
times a single value. Such a function should be declared, for instance, as follows:

Vector<Complex> vf (const Vector<Point> & vP , Parameters& pa = default_Parameters)
{

Real k=pa (1) ; / / k i s the f i r s t parameter of the parameter ' s l i s t pa
uint n=vP . s i z e () ;
Vector<Complex> res (n) ;
for (int j =1; j <=n ; j ++) res (j) =exp (i *k*vP (j) (1)) ;
return res ;

}

Note that the function has to return a Vector object. For a function involving a couple of vectors of points, the
syntax of the declaration of the function is:

Vector<Complex> vf (const Vector<Point> & vP , const Vector<Point> & vQ, Parameters& pa =
default_Parameters)

The functions defined by the user may be used directly as argument of some functions of the library. But in
most of cases it is necessary to define explicitly the object Function associated to the user function. This is the
way to do this:

Parameters par ;
par < <2. < <.000001; / / k and eps values , i n s e r t e d in a parameter l i s t
Function funcf (f , par) ; / / define a scalar function o b j e c t using parameters
Function funcA (A) ; / / define a matrix function o b j e c t
Function funcG (Green_Hemholtz_3D , par) ; / / define a scalar kernel
Function funcvf (vf , par) ; / / define a scalar function in i t s vector form

Do not confuse the vector form of a Function and a function which returns a vector! The vector form means a
function which computes a quantity (scalar, vector, matrix) on a set of a points or bipoints, the result being a
vector of scalars, vectors or matrices. For most applications, scalar form of Function are sufficient. Vector form
is an extension allowing the user to compute the function more efficiently in the case of multiple evaluations.

When the user wants to associate some parameters to his function, it is mandatory to define the object Function
because it stores the list of parameters. To understand the role of the object Function, note that if P is a Point,
the two instructions:

r= f (P , par) ; / / c a l l d i r e c t l y the user function f
funcf (P , r) ; / / c a l l the user function f using the o b j e c t function funcf

are allowed and give the same result. In other words, the object Function shadows the Parameters object. In
this example, using an object function seems to be artificial. The object function has a real interest when internal
computational routines requires user’s functions, because it is easier to send one type of object encapsulating
various type of function rather than many different objects.

251

When you have to pass an object Function to a function which requires such an object, it is possible to use the
constructor syntax Function(f,param), avoiding the explicit creation of the object Function:

Parameters par ;
par < <2. < <.000001; / / value of k and eps
compute(Function (f , par)) ; / / compute requiring an o b j e c t function

When using a function returning a vector or a matrix, because XLIFE++ checks the dimension(s)
of the returned object by using a fake point or a normal vector, it may occur some consistency

problems with the dimension of points or normals that is set to 3 by default. You can change it by specifying
explicitly the dimension of the function when building it:

Function f (dnuinc , pars) ;
f . dimPoint =2; / / change the point dimension
/ / or
Function f (dnuinc , 2 , pars) ; / / s p e c i f y i n g the point dimension when building

It works in the same way for kernels.

Dealing with normal vectors

Sometimes, user functions has to deal with some normal vectors and obviously the normal vectors will depend
on the point where the function is evaluated. For instance, a function computing the normal derivative of a
given incident field (e.g. a plane wave e i kx), will look like:

Complex dnuinc (const Point& P , Parameters& pa = default_Parameters)
{

Real x=P(1) , k=pa ("k") ; / / get k from parameters
Reals n=getN () ; / / get the normal vector at P
return i _ *k*exp (i _ *k*x) *n(1) ;

}

When this function is passed to FE computation routines, the normal vector will be evaluated and transmitted
to the function only if the Function object associated to the function, has declared to use the normal vector. It
is done by the following instructions in the main program:

Parameters pars (1 , "k") ; / / declare k in the parameters
Function f (dnuinc , pars) ; / / a s s o c i a t e parameters to Function o b j e c t
f . require (_n) ; / / t e l l the function w i l l use the normal
TermVector B(intg (Sigma , f * v)) ; / / use function f

The normal vector refers to the domain on which the linear or bilinear form (involving the function) acts. The
orientation of normal vector is described in section 6.10.2.

If you want to call a function involving a normal vector out of the context of FE computations, you have to
"transmit" explicitly the normal vectors required by your function. The following code shows how to do this:

r e a l _ t f (const Point& x , Parameters& pa = defaultParameters)
{ Vector<real_t >& n=getVector (_n) ; / / get the normal vector

return n(1) ; }
. . .

Function F(f) ; F . require (_n) ; / / say the function i s using normal vector
Point P (1 . , 0 .) ; / / point belonging to gamma

252

Vector<Real> n1=gamma. getNormal (P) ; / / get the normal vector to gamma at P
setNx (n1) ; / / pass the normal vector to the context
Real r = F(P , r) ; / / compute F at P using n1

Note that the normal vector returned by the getNormal function, is not interpolated. As a consequence, normal
vector on an edge of the mesh is the normal vector of one of the elements supporting the edge!

The setNx is thread dependant, so it can be used in a multithreading context.

Sum up

• to define a function of one point returning a value of type T and its associated object Function:

T namefunction (const Point& P , Parameters& pa=default_Parameters)
Function nameofobjectfunction (namefunction , [param]) ;

• to define a function of two points (a kernel) returning a value of type T and its associated object Function:

T namefunction (const Point& P , const Point& Q, Parameters& pa=default_Parameters)
Function nameofobjectfunction (namefunction , [param]) ;

• to define a vector function of one point returning a vector of value of type T and its associated object
Function:

Vector<T> namefunction (const Vector<Point>& P , Parameters& pa=default_Parameters)
Function nameofobjectfunction (namefunction , [param]) ;

• to define a vector function of two points (a vector kernel) returning a vector of value of type T and its
associated object Function:

Vector<T> namefunction (const Vector<Point> &,const Vector<Point> &, Parameters&
pa=default_Parameters)

Function nameofobjectfunction (namefunction , [param]) ;

• to avoid the explicit construction of the object function (useful when you have to pass the function as an
argument):

Function (namefunction , [param]) ;

• to declare that the object function uses the normal vector:

Function nameofobjectfunction (namefunction , [param]) ;
nameofobjectfunction . require (_n) ;

For the people who used MELINA Fortran, this approach replaces the famous fctrm.f and the tbasso
vector machinery.

253

B.9.2 Advanced user

Delaying computations

It may occur that the function you plan to use is a very complex one, involving some heavy computations that
you want compute only once by storing some intermediate results somewhere. In order to allow flexibility to
the user, it is advised to use the capabilities of Parameters object to store void pointers. For instance, the first
time the function is called, you can compute some reusable quantities and store them in any structure with
dynamic memory allocation and store the pointer of this structure in the Parameters object. The next time the
function is called, as you have an access to this void pointer (do not forget to recast it), you can recover your
data.

Calling a Function object

If you have to compute the values of the function via the object Function, there are mainly two ways to do it:

• using an alias to the pointer function (requires that you know the type of function and arguments)

Point P=Point (0 , 0) , Q=Point (1 , 1) ;
Complex c=funcf . funSC (P) ; / / a function returning a complex scalar (funSC)
Complex g=funcG . kerSC (P ,Q) ; / / a kernel returning a complex scalar (kerSC)
Matrix<Real> m=funcA .funMR(P) ; / / a function returning a r e a l matrix scalar (funMR)

As this method uses a recasting of a void pointer with no checking, it can cause segmentation errors if
there is a misfit between the type of function required and the real function stored in the void pointer! It is
possible to check the type of arguments by using the utility functions typeReturned, structReturned,
typeFunction and typeArg. This direct method is offered to developers in order to have the best
performance.

• using the safe overloaded operator (), allowing to deal with point or vector of points

Point P=Point (0 , 0) , Q=Point (1 , 1) ;
Complex c ; / / complex to s t o r e the r e s u l t
funcf . checkTypeOn () ; / / a c t i v a t e checking mode
funcf (P , c) ; / / compute a complex scalar function at point P

/ / checking mode i s disabled a f t e r the computation
Vector<Point> pts ; / / a vector of points
pts (1) =P ; pts (2) =Q;
vector <Complex> vc ; / / vector to s t o r e the r e s u l t
funcf . checkTypeOn () ; / / a c t i v a t e the checking mode
funcf (Pts , vc) ; / / compute function at a vector of points

This method does not require the knowledge of the exact type of the function (the output argument
must be compatible !). It allows scalar or vector form independently of the form of the user function.
Note that, contrary to the first method, this method uses a reference to return the values, so you have to
manage its memory allocation. When the function is called with a vector of points as input, the vector
result is resized if it is too small. Using the checkTypeOn function, it is possible to activate the checking
of the type of argument. After computation, the checkType variable is reset to false in order to avoid
unnecessary rechecking. As the checking process invokes RTTI functions (expensive in time), activate
wisely this option. So, if you have to evaluate many times the function, activate the checking only for the
first evaluation. Note that when the checking process is deactivated, this method is still slightly more
expensive than the first one.

254

B.10 Kernel

B.10.1 User kernels

The Function class allows to define kernel type function, say function of two points. But, to deal with integral
equation, more informations are required. It is the role of the Kernel class. A Kernel object manages mainly:

Function kernel ; / / kernel function
Function gradx ; / / x d e r i v a t i v e
Function grady ; / / y d e r i v a t i v e
Function gradxy ; / / x , y d e r i v a t i v e
Function ndotgradx ; / / nx . gradx i f available
Function ndotgrady ; / / ny . grady i f available
Function curlx ; / / curl_x i f available
Function curly ; / / curl_y i f available
Function curlxy ; / / curl_x curl_y i f available
Function divx ; / / div_x i f available
Function divy ; / / div_y i f available
Function divxy ; / / div_x div_y i f available
Function dx1 ; / / d_x1 i f available
Function dx2 ; / / d_x2 i f available
Function dx3 ; / / d_x3 i f available
Kernel * singPart ; / / s ingular part of kernel
Kernel * regPart ; / / regular part of kernel

Dimen dimPoint ; / / dimension of points
SingularityType singularType ; / / s i n g u l a r i t y (_notsingular , _r , _logr , _ loglogr)
Real singularOrder ; / / order of s i n g u l a r i t y
Complex s i n g u l a r C o e f f i c i e n t ; / / c o e f f i c i e n t of s i n g u l a r i t y
SymType symmetry ; / / kernel symmetry : _noSymmetry , _symmetric . . .
String name; / / kernel name
Parameters userData ; / / to s t o r e some additional informations

When dealing with a matrix kernel it may be useful to give d_x1, d_x2, d_x3 because it is not possible to
define the gradient of a matrix kernel as a Function.

So when defining a new one, you have to provide such informations. To understand how it works, this is the
example of Helmholtz3d kernel.

First define all the functions as ordinary c++ functions:

/ / kernel G(k ; x , y) =exp (i *k* r) / (4 * pi * r)
Complex Helmholtz3d (const Point& x , const Point& y , Parameters& pa)
{

Real k = real (pa ("k")) ;
Real r = x . distance (y) ;
Complex i k r = Complex (0 . , 1 .) * k * r ;
return over4pi * std : : exp (i k r) / r ;

}

Vector<Complex> Helmholtz3dGradx (const Point& x , const Point& y , Parameters& pa)
{

Real k = real (pa ("k")) ;
Real r2 = x . squareDistance (y) ;
Real r = std : : sqrt (r2) ;
Complex i k r = Complex (0 . , 1 .) * k * r ;
Complex dr = (i k r − 1 .) / r2 ;
Vector<Complex> g1 (3) ;
scaledVectorTpl (over4pi * exp (i k r) * dr / r , x . begin () , x . end () , y . begin () , g1 . begin ()) ;
return g1 ;

}

255

Vector<Complex> Helmholtz3dGrady (const Point& x , const Point& y , Parameters& pa)
{

Real k = real (pa ("k")) ;
Real r2 = x . squareDistance (y) ;
Real r = std : : sqrt (r2) ;
Complex i k r = Complex (0 . , 1 .) * k * r ;
Complex dr = (i k r − 1 .) / r2 ;
Vector<Complex> g1 (3) ;
scaledVectorTpl (− over4pi * exp (i k r) * dr / r , x . begin () , x . end () , y . begin () , g1 . begin ()) ;
return g1 ;

}

Define regular part functions:

/ / regular part : G_reg (k ; x , y) =(exp (i *k* r) −1) / (4 * pi * r)
Complex Helmholtz3dReg (const Point& x , const Point& y , Parameters& pa)
{

Complex g ;
Real k = real (pa ("k")) ;
Real kr = k * x . distance (y) ;
Complex i k r = Complex (0 . , kr) ;
i f (std : : abs (kr) < 1 . e−04)
{

int n=4; / / f o r abs (kr) <1.e−4 t h i s i s a good choice f o r n (checked)
g = 1 + i k r / n− −;
while (n > 1) { g = 1 + g * i k r / n− −;}
return g *= Complex (0 . , over4pi * k) ;

}
else return over4pi * k * (std : : exp (i k r) − 1 .) / kr ;

}

Vector<Complex> Helmholtz3dGradxReg (const Point& x , const Point& y , Parameters& pa)
{

Real k = real (pa ("k")) ;
Real r = x . distance (y) ;
Complex i k r = Complex (0 . , k* r) ;
Complex t = over4pi * (1 . + std : : exp (i k r) * (i k r − 1 .)) / r ;
Vector<Complex> g (3) ;
scaledVectorTpl (t / r , x . begin () , x . end () , y . begin () , g . begin ()) ;
return g ;

}

Vector<Complex> Helmholtz3dGradyReg (const Point& x , const Point& y , Parameters& pa)
{

Real k = real (pa ("k")) ;
Real r = x . distance (y) ;
Complex i k r = Complex (0 . , k* r) ;
Complex t = − over4pi * (1 . + std : : exp (i k r) * (i k r − 1 .)) / r ;
Vector<Complex> g (3) ;
scaledVectorTpl (t / r , x . begin () , x . end () , y . begin () , g . begin ()) ;
return g ;

}

Define singular part functions:

/ / construct Helmholtz3d Kernel singular part : G_sing (k ; x , y) =1/ (4* pi * r)
Complex Helmholtz3dSing (const Point& x , const Point& y , Parameters& pa)
{

Real r = x . distance (y) ;
return over4pi / r ;

}

256

Vector<Complex> Helmholtz3dGradxSing (const Point& x , const Point& y , Parameters& pa)
{

Real r = x . distance (y) ;
return −over4pi / (r * r) ;
Complex t = −over4pi / (r * r) ;
Vector<Complex> g (3) ;
scaledVectorTpl (t , x . begin () , x . end () , y . begin () , g . begin ()) ;
return g ;

}

Vector<Complex> Helmholtz3dGradySing (const Point& x , const Point& y , Parameters& pa)
{

Real r = x . distance (y) ;
Complex t = over4pi / (r * r) ;
Vector<Complex> g (3) ;
scaledVectorTpl (t , x . begin () , x . end () , y . begin () , g . begin ()) ;
return g ;

}

Now construct Kernel objects:

Parameters pars ;
pars <<Parameter (1 . , "k") ;

Kernel H3Dreg ; / / regular part
H3Dreg .name="Helmholtz 3D kernel regular part " ;
H3Dreg . singularType =_notsingular ;
H3Dreg . singularOrder = 0 ;
H3Dreg . s i n g u l a r C o e f f i c i e n t = over4pi ;
H3Dreg . symmetry=_symmetric ;
H3Dreg . userData = pars ;
H3Dreg . dimPoint = 3 ;
H3Dreg . kernel = Function (Helmholtz3dReg , pars) ;
H3Dreg . gradx = Function (Helmholtz3dGradxReg , pars) ;
H3Dreg . grady = Function (Helmholtz3dGradyReg , pars) ;

Kernel H3Dsing ; / / s ingular part
H3Dsing .name="Helmholtz 3D kernel , s ingular part " ;
H3Dsing . singularType =_r ;
H3Dsing . singularOrder = −1;
H3Dsing . s i n g u l a r C o e f f i c i e n t = over4pi ;
H3Dsing . symmetry=_symmetric ;
H3Dsing . userData = pars ;
H3Dsing . dimPoint = 3 ;
H3Dsing . kernel = Function (Helmholtz3dSing , pars) ;
H3Dsing . gradx = Function (Helmholtz3dGradxSing , pars) ;
H3Dsing . grady = Function (Helmholtz3dGradySing , pars) ;

Kernel H3D; / / kernel
H3D.name="Helmholtz 3D kernel " ;
H3D. singularType =_r ;
H3D. singularOrder = −1;
H3D. s i n g u l a r C o e f f i c i e n t = over4pi ;
H3D. symmetry=_symmetric ;
H3D. userData = pars ;
H3D. dimPoint = 3 ;
H3D. kernel = Function (Helmholtz3d , pars) ;
H3D. gradx = Function (Helmholtz3dGradx , pars) ;
H3D. grady = Function (Helmholtz3dGrady , pars) ;
H3D. regPart = &H3Dreg ;
H3D. singPart = &H3Dsing ;

257

If you do not define singular and regular part kernels, some computations will not be available.

In fact the Helmholtz kernels are defined in mathsResources library of XLIFE++. To load it, use the following
code:

Parameters pars ;
pars <<Parameter (1 . , "k") ;
Kernel H3D = Helmholtz3dKernel (pars) ;

B.10.2 Dealing with normal vectors

For Kernel objects, one can pass to some kernel functions either _nx vector or _ny vector or both using the
same method as one used for Function:

Complex G(const Point& P , const Point& Q, Parameters& pa = default_Parameters)
{
Reals nx= getNx () ; / / get the normal vector at P
Reals ny= getNy () ; / / get the normal vector at Q
. . .
}
. . .
Parameters pars (1 , "k") ; / / declare k in the parameters
Kernel K(g , pars) ; / / a s s o c i a t e parameters to Kernel o b j e c t
K. require (_nx) ; / / declare that kernel uses x−normal
K. require (_ny) ; / / declare that kernel uses y−normal
TermMatrix B(intg (Sigma , Sigma , u*K* v)) ; / / use kernel K

Kernel functions defined in XLIFE++ managed the normal vectors, so the user has not to deal with.

By default, the dimension of points of a Kernel is 3. When you define a 2D kernel, it may happen
some troubles with point dimensions, in particular if the kernel function involves some operations

sensitive to the point dimension. You can cure this problem by testing point dimensions in the kernel
function or by specifying the point dimension when building Kernel:

Real ker (const Point& x , const Point& x , Parameters& pa=defaultParameters)
{ . . . }
. . .
Kernel K(ker) ; K. dimPoint =2;
/ / or
Kernel K(ker , 2) ;

If you develop a new kernel for your own use, contact the administrators. May be they will be happy
to integrate your work in XLIFE++.

B.11 Tabular

The Tabular class allows to manage tabulated values of a function. More precisely, it handles the values of a
function on a uniform grid of any dimension, mainly providing some tools to create the table, to save the table
to a file, to load a table from a file, and to evaluate the values of the function at some points by interpolating

258

from the values on the grid.

Up to now, only scalar (T is Real or Complex) functions of 1,2 or 3 real coordinates, may be with a Paramaters,
are handled:

T f1 (Real) ;
T f1p (Real , Parameters&) ;
T f2 (Real , Real) ;
T f2p (Real , Real , Parameters&) ;
T f3 (Real , Real , Real) ;
T f3p (Real , Real , Real , Parameters&) ;

To create a Tabular define your function and give the grid parameters (the starting coordinate x0, the step dx,
the number of steps nbx, an optional name) along each coordinate:

Real f1 (Real x) { return sin (x) ; }
. . .
Tabular<Real> t1 (0 . , 0 . 0 1 , 1 0 0 , f1) ;

Now, you can print the Tabular, save the Tabular to a file and evaluate the tabulated function at any point
inside the grid domain:

theCout<<t1 ;
t1 . saveToFile (" f1 . tab " , "my optional comment") ;
Real y=t1 (0 . 5) ;

If you saved a Tabular to a file, you can load it in a new Tabular of the same type:

Tabular<Real> t1 (" f1 . tab ") ;

To deal with a 2D or 3D grid, it is quite similar:

Real f2 (Real x , Real y) { return sin (x * y) ; }
. . .
Tabular<Real> t2 (0 . , 0 . 0 1 , 1 0 0 , 0 . , 0 . 0 0 5 , 5 0 , f2) ;
theCout<<t2 ;
t2 . saveToFile (" f2 . tab " , "my optional comment") ;
Real y=t2 (0 . 5 , 0 . 5) ;

If you need a grid of dimension greater than 3, contact the developers. But be care, a 4D grid with
100 steps in each direction requires to store 108 values, almost 1 Go of memory for double values.

Tabulated Function

In order to use tabulated function in FE computation, it is possible to associate a Tabular to a Function:

Real f (Real x , Real y) { return sin (x * y) ; }
. . .
Tabular<Real> tab (0 . , 0 . 0 1 , 1 0 0 , 0 . , 0 . 0 0 5 , 5 0 , f) ;
Function F(tab , 2) ; / / 2 i s the dimension of Point in the function !

To be consistent, the dimension of the input Point of the function has to be specified to the dimension of the
Tabular ! Up to now, Tabular dimension is limited to 3.

It may be of interest to use a Tabular with a dimension less than the Point dimension; for instance a Tabular
defined only for the radial coordinate. In that case, a Function relating Point to radial coordinates must be
defined:

259

Real f (Real x , Real y) { return sin (x * y) ; }
Real r a d i a l (const Point& X , Parameters& pars=defaultParameters) { return norm(X) ; }
. . .
Tabular<Real> tab (0 . , 0 . 0 1 , 1 0 0 , 0 . , 0 . 0 0 5 , 5 0 , f) ;
Function R(r a d i a l) ; / / c r e a t e R function from radial function
Function F(tab , 2 , R) ; / / 2 i s the dimension of Point in the function !

Note that it is also possible to associate a Tabular to the function itself:

Real f (const Point& X , Parameters& pars=defaultParameters) { return sin (x * y) ; }
. . .
Tabular<Real> tab (0 . , 0 . 0 1 , 1 0 0 , 0 . , 0 . 0 0 5 , 5 0 , f) ;
Function F(f , 2) ; / / 2 i s the dimension of Point in the function !
F . createTabular (0 . , 0 . 0 1 , 1 0 0 , 0 . , 0 . 0 0 5 , 5 0) ; / / F i s now tabulated

Once a Tabular is handled by a Function, it will be used in any circumstances!

Tabulated Function works only for scalar functions !

B.12 SymbolicFunction

Some finite element constructions require to pass as argument a SymbolicFunction object, that is a symbolic
expression of a function. Such object is built in by writting any expression involving

• some constants (real or complex)

• some variables : x_1, x_2, x_3

• some algebraic operators : + - * / ^ (power)

• some boolean operators : && || < <= > >= == != ! (not)

• some mathematical functions : abs, realPart, imagPart, sqrt, squared, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, exp, log, log10

The result of a boolean expression is either 0 (false) or 1 (true).

The functions asinh, acosh, atanh are only available when compiling with C++ 2011 standard.

To deal with a symbolic function is very easy. For instance consider the function

f (x1, x2) = [1−x1 +cos(x2)]3.

To define it as a symbolic function, write:

SymbolicFunction f s = (1−x_1+cos (x_2)) ^3;

To evaluate it, write:

Real r = f s (−1 ,0) ;
Complex c = f s (i_ , 0) ;

260

You can mix algebraic and boolean expressions. Consider the following function:

f (x1) =
{

ex1 x1 ≤ 0
1 x1 > 0

To define it, write:

SymbolicFunction f s = (x_1 <=0) *exp (x_1) +(x_1 >0) ;

B.13 Parametrization

Besides canonical geometries, XLIFE++ proposes to define geometries from parametrization of its boundaries
or a mapping of a canonical domain. This is the purpose of the Parametrization object that deals with function
f : ∣∣∣∣ Ω̂⊂Rp −→ Ω⊂Rn

x −→ f (x)

where x is the parameter (say t , or (u, v)) and p ≤ n. When p = 1, parametrizations concern curves, when p = 2
parametrizations concerns surfaces. Note that p can be equal to n. In that case, f is a mapping (for instance
the polar mapping). In practice, interesting situations correspond to 2D/3D curve or 3D surface.

There exist two ways to construct a Parametrization object, either by giving an explicit C++ function or using
symbolic functions.

The explicit C++ function must be of the form:

RealVector f (const Point& x , Parameters& pars , DiffOpType d)

where x is the parameter vector, pars a list of additional parameters (do not confuse with the parameter vector)
and d a differential operator (one of _id,_d1,_d2,_d11, ...) telling which derivative is requested.
As a first example, consider the circle arc

Ω=
{

(R cos t ,R sin t), t ∈ Ω̂= [−π
4

,
π

4
]
}

.

The XLIFE++ code looks like:

RealVector fc (const Point& x , Parameters& pars , DiffOpType d)
{ Real R=pars ("R") , t =x (1) ;

i f (d==_id) return RealVector (R* cos (t) ,R* sin (t)) ;
parfun_error (" fc " ,d) ;

}
. . .
Parameters pars (1 . , "R") ;
Parametrization pc(− pi_ /4 , pi_ /4 , fc , pars , " arc ") ;

The parametrization name (here "arc") is not mandatory.

When functions are quite simple, symbolic functions may be used:

Real R= 1 . ;
Parametrization pc(− pi_ /4 , pi_ /4 , R* cos (x_1) , R* sin (x_1) , Parameters () , " arc ") ;

261

In that case, an empty parameter is passed to the parametrization and R is passed to the symbolic functions.

To construct parametrizations, the following syntaxes are available:

/ / 1D parametrization on segment [a , b]
Parametrization pa (a , b , c++_fun , parameters ,name) ;
Parametrization pa (a , b , symb_fun , symb_fun , parameters ,name) ;
Parametrization pa (a , b , symb_fun , symb_fun , symb_fun , parameters ,name) ;
/ / 2D parametrization on rectangle [a , b] x [c , d]
Parametrization pa (a , b , c , d , c++_fun , parameters ,name) ;
Parametrization pa (a , b , c , d , symb_fun , symb_fun , symb_fun , parameters ,name) ;
/ / general constructors
Parametrization pa (geometry , c++_fun , parameters ,name) ;
Parametrization pa (geometry , symb_fun , symb_fun , parameters ,name) ;
Parametrization pa (geometry , symb_fun , symb_fun , symb_fun , parameters ,name) ;

Once constructed, the Parametrization can compute the point at a parameter:

Parametrization pc(− pi_ /4 , pi_ /4 , cos (x_1) , sin (x_1) , Parameters () , " arc ") ;
Point P=pc (pi_ \8) ;
Parametrization ps(− pi_ /2 , pi_ /2 , − pi_ , pi_ , cos (x_1) * cos (x_2) , cos (x_1) * sin (x_2) , sin (x_1) ,

Parameters () , " unit sphere") ;
Point Q=ps (0 , 0) ;

If derivatives are available, it is also possible to compute some important geometrical quantities at parameter :
the local lengths (ds), the curvilinear abscissas (s), the normal vector (N), the binormal vector (bN, only for 3D
curve), the tangent vector (T), the bitangent vector (b, only for 3D surface), the curvatures (principal curvatures
in 3D)1:

RealVector Parametrization . lengths (x1 , [x2])
Real Parametrization . length (x1 , [x2])
Real Parametrization . bilength (x1 , x2) / / only 2D parametrization
RealVector Parametrization . curabcs (x1 , [x2])
Real Parametrization . curabc (x1 , [x2])
Real Parametrization . bicurabc (x1 , x2) / / only 2D parametrization
RealVector Parametrization . normals (x1 , [x2])
RealVector Parametrization . normal (x1 , [x2])
RealVector Parametrization . binormal (x1) / / only 3D curve
RealVector Parametrization . tangents (x1 , [x2])
RealVector Parametrization . tangent (x1 , [x2])
RealVector Parametrization . bitangent (x1 , x2) / / only 3D surface
RealVector Parametrization . curvatures (x1 , [x2])
Real Parametrization . curvature (x1 , [x2])
Real Parametrization . bicurvature (x1 , x2) / / only 3D surface
Real Parametrization . gaussCurvature (x1 , x2) / / only 3D surface
Real Parametrization . meanCurvature (x1 , x2) / / only 3D surface
r e a l _ t normalCurvature (x1 , x2 , d) / / normal curvature r e l a t i v e l y to d (3D surface)
RealVector curvatures ((x1 , x2 , d) / / Gauss , mean and normal curvature (3D surface)
Real Parametrization . torsion (x1) / / only 3D curve
RealMatrix weingarten (x1 , x2) / / only 3D surface
RealMatrix jacobian (x1 , [x2]) / / jacobian matrix
RealVector metricTensor (x1 , [x2]) / / metric tensor
RealVector c h r i s t o f f e l (x1 , [x2]) / / C h r i s t o f f e l symbols (3D surface)

Computations of most of these geometrical quantities require first and second derivatives of the parametriza-
tion. Only the computation of the torsion requires third derivatives. These derivatives are available when using
symbolic functions but have to be given when using a C++ function, for instance:

1mathematical definitions are available in the developer documentation

262

RealVector fc (const Point& x , Parameters& pars , DiffOpType d)
{ Real R=pars ("R") , t =x (1) ;

switch (d)
{ case _id : return RealVector (R* cos (t) , R* sin (t)) ; / / no d e r i v a t i v e

case _d1 : return RealVector (−R* sin (t) , R* cos (t)) ; / / f i r s t d e r i v a t i v e
case _d11 : return RealVector (−R* cos (t) , −R* sin (t)) ; / / second d e r i v a t i v e
case _d111 : return RealVector (R* sin (t) , −R* cos (t)) ; / / third d e r i v a t i v e
default : parfun_error (" fc " ,d) ;

}
return RealVector () ;

}

Note that curvilinear abcissas are integrals. In XLIFE++, these integrals are approximated using a trapeze
method with 1000 points and a linear interpolation. This number of points may be changed using:

Parametrization pc(− pi_ /4 , pi_ /4 , cos (x_1) , sin (x_1) , Parameters () , " arc ") ;
pc . np = 500; / / change the number of points of trapeze method

Note that it is also possible to associate C++ functions or symbolic functions to the lengths, the curvilinear
abscissas, the normals, the tangents, the curvatures using the setlength, setcurabc, setnormal, settangent and
setcurvature function. The inverse of the parametrization may be called if the user has given it either in C++
form or in symbolic form:

. . .
RealVector invfc (const Point& p , Parameters& pars , DiffOpType d)
{ i f (d!= _id) parfun_error (" invfc " ,d) ;

return RealVector (1 , atan2 (tp (2) , tp (1))) ;
}
. . .
Parametrization pc(− pi_ /4 , pi_ /4 , fc , pars , " arc ") ;
pc . setinvParametrization (invfc) ;
Real t =pc . toRealParameter (Point (0 . , 0 .)) ; / / get parameter r e l a t e d to (0 , 0)

All canonical geometries have an internal parametrization defined either on [0,1] or [0,1]×[0,1] or [0,1]×[0,1]×
[0,1]. See the developer documentation for the expression of the canonical parametrizations.

When geometry is composite, the parametrization is managed by the PiecewiseParametrization class inher-
iting from Parametrization class. The piecewise parametrization is the collection of "local" parametrizations
related to canonical geometries that compose the composite geometry. It is not globally C 0 but it is possible to
travel through with the help of an additional map that handles the neighbor parametrizations (see the developer
documentation for details). Most of geometrical functions are available.

B.14 Splines

Generally speaking, a spline is a piecewise polynomial curve that approaches, in a sense to be specified, an
ordered list of points. The simplest one is the spline of degree 1 (linear spline) which connects the points by
segments. XLIFE++ provides the Hermite cubic spline (C2), the Catmull-Row spline (C1), the B-spline and
rational B-Spline (Ck) and the Bezier curve (Ck) . The two first ones are interpolation splines while the last ones
are approximation spline. Combining two rational B-splines in two directions gives a surface approximation,
named NURBS acronym of Non Uniform Rational B-Spline.

B.14.1 C2 spline

Let (ti)0≤i≤n and (yi)0≤i≤n . There exists a unique C 2 piecewise cubic polynomial such that q(ti) = yi for 0 ≤ i ≤ n
and q ′(t0) = y ′

0, q ′(tn) = y ′
n . Each cubic polynomial may be constructed from the knowledge of bi = q ′(ti), 0 ≤

263

i ≤ n which is the solution of the following linear system (hi = ti − ti−1, hi , j = 2(hi +h j)):



1 0
h2 h1,2 h1

. . .
. . .

. . .
hi+1 hi ,i+1 hi

. . .
. . .

. . .
hn hn−1,n hn−1

0 1


·



b0

b1
...

bi
...

bn−1

bn


=



y ′
0

3

h1h2

(
h2

1(y2 − y1)+h2
2(y1 − y0)

)
...

3

hi hi+1

(
h2

i (yi+1 − yi)+h2
i+1(yi − yi−1)

)
...

3

hn−1hn

(
h2

n−1(yn − yn−1)+h2
n(yn−1 − yn−2)

)
y ′

n


The spline is said to be clamped because derivatives at ends are imposed.

Other boundary conditions are usual : q ′′
1 (t0) = q ′′

n(tn) = 0 leading to natural spline

or periodicity conditions : q ′
1(t0) = q ′

n(tn) and q ′′
1 (t0) = q ′′

n(tn) leading to periodic spline.

To interpolate any set of points (Pi)0≤i≤n in R2 or R3, the previous method is extended as following. Let
T = (ti)0≤i≤n a set of parameters (knots) and a set of scalar values Y = (yi)0≤i≤n , we denote ST,Y the spline
function related to the sets T,Y . The C2 spline related to the set of points (Pi) is defined as:

264

Q(t) = (
ST,P1(t),ST,P 2 (t),ST,P 3 (t)

)
where P k = (P k

i)i=0,n with P k
i the k th coordinate of the point Pi .

The usual choices of parametrization are

• the x-parametrization: ti = P 1
i , 0 ≤ i ≤ n (gives the original C2 spline).

• the uniform parametrization: ti = i , 0 ≤ i ≤ n.

• the chordal parametrization: t0 = 0, ti = ti−1 +∥Pi −Pi−1∥ , 1 ≤ i ≤ n.

• the centripetal parametrization: t0 = 0, ti = ti−1 +∥Pi −Pi−1∥1/2 , 1 ≤ i ≤ n.

To make the user life easier, the parameter is pullback to the interval [0,1]. In other words, user
addresses the spline parametrization using s ∈ [0,1] that is mapped to t = t0 + (1− s)tn where t0, tn

are the spline parameter bounds . All splines work in the same way.

XLIFE++ provides the C2Spline class. There are two ways to construct a C2 spline, either by giving two vectors
of reals (T,Y) (classical C2 spline) or giving a vector of points P (extended C2 spline). The following optional
parameters may be given at construction:

• the type of parametrization : one of _xParametrization, _uniformParametrization, _chordalParametriza-
tion, _centripetalParametrization

• the boundary conditions : two of _naturalBC, _clampedBC, _periodicBC

• the derivatives at end points (vector of reals) required when using clamped conditions

Number n=5;
Real x=0 , dx=pi_ /n ;
vector <Point> points (n+1) ;
for (Number i =0; i <=n ; i ++ , x+=dx) points [i]= Point (x , sin (x)) ;
C2Spline csn (points , _xParametrization) ; / / natural spl ine
C2Spline csc (points , _xParametrization , _clampedBC , _clampedBC ,

Reals (1 . , 1 .) , Reals (1 . , − 1 .)) ; / / clamped spline
C2Spline csp (points , _xParametrization , _periodicBC) ; / / periodic spl ine

When _xParametrization is selected, the curve is regarded as x → y(x) curve and the returned
"values" are 1D points. In contrast when an other parametrization is selected, the curve is regarded

as t → (x(t), y(t)) and the returned "values" are 2D points.

265

Be cautious with periodic conditions. For a periodic open curve (e.g sin x on [0,2π]) use only the
_xParametrization mode and for a closed periodic curve use other parametrization mode.

Once a C2Spline object is constructed, using either the function evaluate or the operator (), it can be
evaluated at any parameter t ∈ [0,1].

. . .
C2Spline csn (points , _xParametrization) ;
Real t = 0 . 5 ; / / midle parameter
Point P=csn (t) ; / / value
Point dP=csn (t , _dt) ; / / f i r s t d e r i v a t i v e (vector as a point)
Point d2P=csn (t , _dt2) ; / / second d e r i v a t i v e (vector as a point)

C2Spline allocates also a Parametrization object related to the spline parametrization. Using this ob-
ject, other quantities such as curvilinear abscissa, normal or tangent vector, curvatures are available (see
Parametrization class):

. . .
C2Spline csn (points , _xParametrization) ;
Real t = 0 . 5 ; / / midle parameter
const Parametrization& pa=csn . parametrization () ;
Real c=pa . curvature (t) ;
Real s=pa . curabc (t) ;
Reals no=pa . normal (t) ;
Reals ta=pa . tangent (t) ;

B.14.2 Catmull-Rom spline

An other way to construct interpolation spline consists in imposing also the tangent vectors (Ti) at control
points Pi . Several methods have been proposed and the Catmull-Rom method is one of them. On the interval
[ti , ti+1] the spline Q is defined by

Q(t) = [
1 t t 2 t 3

]


0 1 0 0
−α 0 α 0
2α α−3 3−2α −α
−α 2−α α−2 α




Pi−1

Pi

Pi+1

Pi+2


where α is a tension parameter which is related to the underlying parametrization. The standard choices of α
are:

• α= 0 : the standard Catmull-Rom spline,

• α= 1 : the chordal Catmull-Rom spline,

• α= 1
2 : the centripetal Catmull-Rom spline.

The Catmull-Rom spline are local (moving a point modifies only the curve in the neighborhood of the point),
the approximation is C 1 but not C 2, the computation is fast. The centripetal Catmull-Rom spline has additional
properties : there is no self-intersection, cusp will never occur and it follows the control points in a better way.

Note that to close a a curve, it is sufficient to add the two last points at the beginning and the two first points at
the end:

(P1 P2 P3 . . .Pn−2 Pn−1 Pn) −→ (Pn−1 Pn P1 P2 P3 . . .Pn−2 Pn−1 Pn P1 P2)

and build Catmull-Rom spline on segments [Pn ,P1], [P1,P2], . . . , [Pn−2,Pn−1], [Pn−1,Pn].

On the next figure, the influence of the parameter α may be observed; the value α= 0.5 giving the best result.

266

XLIFE++ provides the CatmullRomSpline class. It has only one constructor from a vector of points P and
optional parameters are available:

• the type of parametrization : one of _xParametrization, _uniformParametrization, _chordalParametriza-
tion, _centripetalParametrization

• the tension parameter α (default value : 0.5)

• the boundary conditions : two of _undefBC, _naturalBC, _clampedBC, _periodicBC

• the tangent vectors at end points (vector of reals) required when using clamped conditions

Number n=6;
vector <Point> pts (ns+1) ;
Real s =0 , ds=2* pi_ /ns ;
for (Number i =0; i <=ns ; i ++ , s+=ds) pts [i]= Point (2* cos (s) , sin (s)) ; / / points on e l l i p s e
CatmullRomSpline cat (pts) ;

In this example, as the last point is the same as the first point, the curve will be automatically closed.

Once a CatmullRomSpline object is constructed, using either the function evaluate or the operator (), it can
be evaluated at any parameter t in [0,1].

267

. . .
CatmullRomSpline cat (pts) ;
Real t =0.5 / / midle parameter
Point P=cat (t) ; / / value
Point dP=cat (t , _dt) ; / / f i r s t d e r i v a t i v e (vector as a point)
Point d2P=cat (t , _dt2) ; / / second d e r i v a t i v e (vector as a point)

CatmullRomSpline allocates also a Parametrization object related to the spline parametrization. Using this
object, other quantities such as curvilinear abscissa, normal or tangent vector, curvatures are available (see
Parametrization class):

. . .
CatmullRomSpline cat (pts) ;
Real t =0.5 / / midle parameter
const Parametrization& pa=cat . parametrization () ;
Real c=pa . curvature (t) ;
Real s=pa . curabc (t) ;
Reals no=pa . normal (t) ;
Reals ta=pa . tangent (t) ;

B.14.3 Bezier curve

For the set of control points (Pi)0≤i≤n , the Bezier curve is defined by

Q(t) =
n∑

i=0
B n

i (t)Pi for t ∈ [0,1]

where B n
i =C i

n t i (1− t)n−i are the Bernstein polynomials (
∑n

i=0 B n
i = 1). Note that the degree of polynomials is

equal to the number of points minus 1. There are the following properties

• Q(0) = P0 and Q(1) = Pn but the curve does not interpolate the interior points (P1, . . . ,Pn−1),

•
−−−→
P0P1 (resp.

−−−−−→
Pn−1Pn) is a tangent vector to the curve at P0 (resp. Pn),

• the curve is inside the convex hull of the control points,

• the curve is C∞.

XLIFE++ provides the BezierSpline class with only one simple constructor from a vector of points P :

Number n=5;
vector <Point> points (n+1) ;
Real x=0 , dx=pi_ /n ;
for (Number i =0; i <=n ; i ++ , x+=dx) points [i]= Point (x , sin (x)) ;
BezierSpline bz (points) ;

The parameter t lives always in the interval [0,1].

268

Once a BezierSpline object is constructed, using either the function evaluate or the operator (), it can be
evaluated at any parameter t ∈ [0,1]:

. . .
BezierSpline bz (points) ;
Real t = 0 . 5 ; / / midle parameter
Point P=bz (t) ; / / value
Point dP=bz (t , _dt) ; / / f i r s t d e r i v a t i v e (vector as a point)
Point d2P=bz (t , _dt2) ; / / second d e r i v a t i v e (vector as a point)

BezierSpline allocates also a Parametrization object related to the spline parametrization. Using this
object, other quantities such as curvilinear abscissa, normal or tangent vector, curvatures are available (see
Parametrization class):

. . .
BezierSpline bz (points) ;
Real t = 0 . 5 ;
const Parametrization& pa=bz . parametrization () ;
Real c=pa . curvature (t) ;
Real s=pa . curabc (t) ;
Reals no=pa . normal (t) ;
Reals ta=pa . tangent (t) ;

B.14.4 B-Spline

The B-spline curve is a generalization of the Bezier curve. Let t0 ≤ t1 · · · ≤ tm a set of m +1 knots and the
B-spline functions of degree k defined by recurrence:

for 0 ≤ i ≤ m −1 Bi ,0(t) =
{

1 ti ≤ t < ti+1

0 else

for k ≥ 1, 0 ≤ i ≤ m −k −1 Bi ,k (t) = t − ti

ti+k − ti
Bi ,k−1(t)+ ti+k+1 − t

ti+k+1 − ti+1
Bi+1,k−1(t)

with the convention
•
0
= 0.

The B-spline functions have a lot of properties, in particular

• Bi ,k is a polynomial of order k on intervals [t j , t j+1] with support [ti , ti+k+1],

• 0 < Bi ,k (t) < 1 for t ∈]ti , ti+k+1],

269

• Bi ,k is C∞ at right and is C k−r at knots of multiplicity r

For the set of n+1 control points P0,P1, . . . ,Pn and the set of knots t0 ≤ t1 · · · ≤ tm with m ≥ n+k+1, the B-spline
curve is defined by

Q(t) =
n∑

i=0
Bi ,k (t)Pi for tk ≤ t ≤ tn+1.

The B-spline curve is inside the convex hull of the control points, it is C k−1 if all the knots are of multiplicity
1, moving a point Pi induces a modification of the points related to the interval [ti , ti+k]. A Bezier curve is a
B-Spline with a knots vector of the form [0,0,. . . 0,1,1,. . . 1].

To clamp the curve at P0 choose t0 = t1 · · · = tk < tk+1 and to close the curve duplicate the k +1 first points at the
end of the set of points.

• Clamped B-spline of degree 3 with 6 control points and knots [0,0,0,0,1,2,3,3,3,3] plotted on [0,3]:

A rational B-spline is defined as following:

Q(t) =

n∑
i=0

ωi Bi ,k (t)Pi

n∑
i=0

ωi Bi ,k (t)

for tk ≤ t ≤ tn+1

where (ωi)i=0,n are some weights. When the weight ωi is large, the curve goes to the control point Pi . When all
the weights are equal to 1, the rational B-spline coincides with the B-spline.

270

If t0 = t1 = ·· · = tk < tk+1 and P0 ̸= P1 then

Q(tk) = P0,

Q ′(tk) = k

tk+1 − tk

w1

w0
(P1 −P0),

Q ′(tk)×Q ′′(tk) = k2(k −1)

(tk+1 − tk)2(tk+2 − tk)

w1w2

w2
0

(P1 −P0)× (P2 −P0),

κ= k −1

k

tk+1 − tk

tk+2 − tk

w1w2

w2
0

2A

c3 (curvature)

with A the surface of the triangle (P0,P1,P2) and c = ||P1 −P0||. That gives a way to match the rational B-spline
to an other curve up to C 2.

By solving a linear inverse problem, the control points may be calculated in order to interpolate a given set of
points. In that case, the spline is named interpolation B-spline. For such spline, it is possible to impose the
derivative vectors at the endpoints when the spline is clamped.

XLIFE++ provides the BSpline class with constructors that takes a vector of points P and some optional data:

• the type of B-spline, either _splineApproximation or _splineInterpolation

• the degree of B-spline, default value 3

• the type of parametrization : one of _uniformParametrization, _chordalParametrization, _centripetal-
Parametrization

• the boundary conditions : two of _undefBC, _naturalBC, _clampedBC, _periodicBC

• derivative vectors at end points when clamped B-spline is selected

• the vector of weights (default 1)

The given vector of points is either the list of control points (approximation B-spline) or the list of interpolation
points (interpolation B-spline). When the type of B-spline is not given, it is assumed to be an approximation
B-spline:

Number n=6;
vector <Point> pts (n+1) ;
Real s =0 , ds=2* pi_ /n ;
for (Number i =0; i <=n ; i ++ , s+=ds) pts [i]= Point (2* cos (s) , sin (s)) ; / / points on e l l i p s e
BSpline bs (points , 3 , _periodicBC) ;

Specifying a periodic condition at starting point stands obviously for periodic condition at ending point!

To use some weights, define a vector of weights of the size of vector of control points:

vector <real_t > we(pts . s i z e () , 1 .) ;
for (Number k =0;k<we. s i z e () ; k+=2) we[k] = 0 . 5 ;
BSpline bsw(pts , 3 , _periodicBC , _periodicBC ,we) ;

Because of the signature of the constructor, both boundary conditions have to be specified even they are
redundant!

271

Once a BSpline object is constructed, using either the function evaluate or the operator (), it can be evaluated
at any parameter t ∈ [0,1]:

. . .
BSpline bs (points , 3 , _periodicBC) ;
Real t = 0 . 5 ; / / midle parameter
Point P=bs (t) ; / / value
Point dP=bs (t , _dt) ; / / f i r s t d e r i v a t i v e (vector as a point)
Point d2P=bs (t , _dt2) ; / / second d e r i v a t i v e (vector as a point)

BSpline allocates also a Parametrization object related to the spline parametrization. Using this ob-
ject, other quantities such as curvilinear abscissa, normal or tangent vector, curvatures are available (see
Parametrization class):

. . .
BSpline bs (points , 3 , _periodicBC) ;
Real t = 0 . 5 ; / / midle parameter
const Parametrization& pa=bs . parametrization () ;
Real c=pa . curvature (t) ;
Real s=pa . curabc (t) ;
Reals no=pa . normal (t) ;
Reals ta=pa . tangent (t) ;

The following example shows how to build a clamped interpolation B-spline with a uniform parametrization
from 5 points located on the sine curve:

. . .
vector <Point> pts (5 , Point (0 . , 0 .)) ;
pts [1]= Point (pi_ /4 , sqrt (2) / 2 .) ; pts [2]= Point (pi_ / 2 , 1 .) ;
pts [3]= Point (3* pi_ /4 , sqrt (2) / 2 .) ; pts [4]= Point (pi_ , 0 .) ;
Reals d0 (2 , 1 .) ,d1=d0 ; d1 [1] = − 1 . ; / / d e r i v a t i v e s at end points
BSpline bs (_SplineInterpolation , pts , 3 , _uniformParametrization ,

_clampedBC , _clampedBC , d0 , d1) ;

272

When specifying only _splineInterpolation and a set of points in constructor, the B-spline will be a natural
interpolation B-spline of degree 3 with an uniform parametrization (not rational).

B.14.5 Spline surface (nurbs)

The most common method to approximate surface are NURBS (non uniform rational B-spline) that are no
more than the cross-product of two rational B-splines. Let

• a set of (m +1)× (n +1) control points Pi j , 0 ≤ i ≤ m and 0 ≤ j ≤ n

• a knot vector in u-direction and v-direction : U = [u0,u1, . . .uk] and V = [v0, v1, . . . vℓ],

• the degree p in u-direction and the degree q in v-direction

• k = m +p +1 and ℓ= n +q +1

The NURBS surface is defined by

(u, v) −→Q(u, v) =

m∑
i=0

n∑
j=0

ωi j Bi ,p (u)B j ,q (v)Pi j

m∑
i=0

n∑
j=0

ωi j Bi ,p (u)B j ,q (v)

.

To deal with nurbs, XLIFE++ provides the Nurbs class. There is only one constructor from a vector of vectors of
points (control points) and optional parameters:

• the degrees of B-spline along u /v parameter (default is 3)

• the boundary conditions along u /v parameter, for each parameter, two of _naturalBC, _clampedBC,
_periodicBC

• the vector of vectors of weights (default no weight)

Number n=4;
Real ds=pi_ /(2*n) , u=−pi_ /2 , v =0;
PointMatrix pts (2*n+1 , Points (n+1)) ;
for (Number i =0; i <=2*n ; i ++ ,u+=ds) / / points on the quarter of unit sphere
{

v =0;
for (Number j =0; j <=n ; j ++ ,v+=ds) pts [i] [j]= Point (cos (u) * cos (v) , cos (u) * sin (v) , sin (u)) ;

}
Nurbs nuA(_splineApproximation , pts) ; / / c r e a t e approximation nurbs
Nurbs nuI (_splineInterpolation , pts) ; / / c r e a t e interpolation nurbs

273

NURBS approximation and NURBS interpolation

Once a Nurbs object is constructed, using either the function evaluate or the operator (), it can be evaluated
at any parameter (u, v) ∈ [0,1]× [0,1]:

. . .
Point P=nu (0 . 5 , 0 . 5) ; / / value
Point duP=nu(0 . 5 , 0 . 5 , _d1) ; / / f i r s t d e r i v a t i v e (vector as a point)
Point dvP=nu(0 . 5 , 0 . 5 , _d2) ; / / f i r s t d e r i v a t i v e (vector as a point)

Nurbs allocates also a Parametrization object related to the spline parametrization. Using this object, other
quantities such as curvilinear abscissa, normal or tangent vector, curvatures are available (see Parametrization
class):

. . .
const Parametrization& pa=nu . parametrization () ;
r e a l _ t u=0.5 , v = 0 . 5 ;
Reals cu=pa . curvatures (u , v) ; / / two main curvatures
Reals no=pa . normal (u , v) ; / / normal vector
Reals ta=pa . tangents (u , v) ; / / two orthogonal tangent v e c t o r s in a same vector

B.15 Timer

The Timer class is a utility class to perform computational time analysis (cpu time and elapsed time) and
manage dates. For a user, only a few functions are useful. They do not involve explicitly some Timer objects.
There are some functions to get date in various forms :

String theTime () ; / / returns current time
String theDate () ; / / returns current date as dd .mmm. yyyy
String theShortDate () ; / / returns current date as mm/ dd / yyyy or dd /mm/ yyyy
String theLongDate () ; / / returns current date as Month Day , Year or Day Month Year
String theIsoDate () ; / / returns ISO8601 format of current date (yyyy −mm−dd)
String theIsoTime () ; / / returns ISO8601 format of current time (hh−mi− s s)

274

and others to get cpu or elapsed time :

double cpuTime () ; / / user time (" cputime ") in sec . s ince l a s t c a l l
double cpuTime(const String &) ; / / same and p rin ts i t with comment
double totalCpuTime () ; / / elapsed time in sec . s ince f i r s t c a l l
double totalCpuTime (const String &) ; / / same and p rin ts i t with comment
double elapsedTime () ; / / elapsed time in sec . s ince l a s t c a l l
double elapsedTime (const String &) ; / / same and p rin ts i t with comment
double totalElapsedTime () ; / / elapsed time in sec . s ince f i r s t runtime c a l l
double totalElapsedTime (const String &) ; / / same with comment

Using these functions, it is easy to perform time computation analysis. For instance :

#include " x l i f e ++.h"
using namespace x l i f e p p ;
int main ()
{

i n i t (f r) ; / / i n i t i a l i z e s timers
/ / task 1
. . .

cpuTime("cpu time for task 1") ;
elapsedTime (" elapsed time for task 1") ;
/ / task 2
. . .

cpuTime("cpu time for task 2") ;
elapsedTime (" elapsed time for task 2") ;
/ / end of tasks
totalCpuTime (" t o t a l cpu time") ;
totalElapsedTime (" t o t a l elapsed time") ;

}

B.16 Memory

Using the Memory, the memory usage can be inspected using the following functions:

Real phyMem = Memory : : physicalMem () ; / / physical memory
Real freeMem = Memory : : physicalFreeMem () ; / / f r e e physical memory
Real procMem = Memory : : processPhysicalMem () ; / / physical memory used by the process

The default unit is the MegaBytes (Mo), but you can change the unit by specifying one of the following units in
the argument of memory functions:

enum MemoryUnit { _byte , _kilobyte , _megabyte , _gigabyte , _terabyte } ;

B.17 Mathematical resources

Mathematical resources are defined in mathsResources library of XLIFE++. Classical kernels excepted (for
Laplace, Helmholtz and Maxwell 2d or 3d problems), it contains a lot of stuff shown here.

B.17.1 Random generators

XLIFE++ offers an uniform distribution generator and a normal distribution generator. As C++11 now provides
a lot of random generators, contrary to C98 that proposes only a uniform distribution generator, the front end
user functions will use prior the C++11 generators if C++11 is available (default behaviour from gcc 6.1). These
front end functions are the following:

275

Real uniformDistribution (Real a =0. , Real b= 1 .) ; / / r e a l from uniform d i s t r i b u t i o n on [a , b [
Real normalDistribution (Real mu=0. , Real sigma = 1 .) ; / / r e a l from normal d i s t r i b u t i o n (mu, sigma)

a, b, mu, sigma have the specified default values if they are not given. For instance to build a vector of random
values of size 100:

Reals us (100) , ns (100) ;
for (Number i =1; i <=100; i ++) us (i) = uniformDistribution () ;
for (Number i =1; i <=100; i ++) ns (i) = normalDistribution (2 . , 5 .) ; / / normal mu=2 , sigma=5

Random vectors or random matrices can be constructed in a direct way :

Reals us = uniformDistribution <Real >(100) ; / / uniform on [0 , 1 [
Reals ns = normalDistribution<Real > (1 0 0 , 2 . , 5 .) ; / / normal d i s t r i b u t i o n mu=2 , sigma=5
RealMatrix mn = normalDistribution<Real >(10 ,10) ; / / normal d i s t r i b u t i o n mu=0 , sigma=1 (default)

Works also with complex vectors or complex matrices.

Because of multiple random functions proposed, do not omit the dot in distribution parameters
(Real) when they are passed explicitely.

There exist also functions addressing directly double or complex pointers to deal with C vectors, for
instance:

Reals us (100) ;
uniformDistribution(&us [0] , − 1 . , 1 . , 1 0 0) ; / / f i l l us using uniform d i s t r i b u t i o n on [−1 ,1[

If you want to address the C98 random generators when C++11 is on, you have to use the "C" version of previous
functions:

Real uniformDistributionC (Real a =0. , Real b= 1 .) ; / / C− s t y l e uniform d i s t r i b u t i o n on [a , b [
Real normalDistributionC (Real mu=0. , Real sigma = 1 .) ; / / C− s t y l e normal d i s t r i b u t i o n (mu, sigma)

In C-style, two normal distribution generators are available : the Marsiglia generator (default) ant the Box-
Muller generator. You can specified it by using keyword (_MarsagliaGenerator or _BoxMullerGenerator)
after normal distribution parameters:

Reals us (100) :
normalDistributionC(&us [0] , 0 . , 1 . , _BoxMullerGenerator ,100) ;

Random generators are automatically initialized when starting XLIFE++ applications. Initialization
value (the seed) is based on current time. It is possible to re-initialize random engines them with

your own seed :

int myseed=1000;
initRandomGenerators (myseed) ;

276

B.17.2 Gauss formulae

You can use:

• the Gauss-Legendre formula

void gaussLegendreRule (Number n , Reals& points , Reals& weights) ;

• the Gauss-Lobatto formula

void gaussLobattoRule (Number n , Reals& points , Reals& weights) ;

• the Gauss-Jacobi formula

void gaussJacobiRule (Number n , Real a , Real b , Reals& points , Reals& weights) ;

The (n+1)/2 first positive points in ascending order only are returned.

B.17.3 Exact solutions

The field scattered by a solid sphere of radius R of an incoming field Φw = e i k x with Neumann or Dirichlet
boundary conditions on the sphere are available with the following functions:

Complex scatteredFieldSphereNeumann (const Point& x , Parameters& param) ;
Complex scatteredFieldSphereDirichlet (const Point& x , Parameters& param) ;

The field scattered by a solid disk of radius R of an incoming fieldΦw = expi∗k∗x with Neumann or Dirichlet
boundary conditions on the disk are available with the following functions:

Complex scatteredFieldDiskDirichlet (const Point& x , Parameters& param) ;
Complex scatteredFieldDiskNeumann (const Point& x , Parameters& param) ;

These four functions require an associated Parameters as second argument with

• a Parameter bearing the name "k" and holding the value of the wave number k.

• a Parameter bearing the name "radius" and holding the value of the sphere radius.

The field scattered by a solid sphere of radius R of an incoming field Φw = e i k z with tangential boundary
condition E ×n = 0 (electric field) on the sphere is available with the following function:

Complexes scatteredFieldMaxwellExn (const Point& x , Parameters& param) ;

This function requires an associated Parameters as second argument with a Parameter bearing the name "k"
and holding the value of the wave number k.
At last, the spherical harmonics Y m

l up to order n on the unit sphere and their gradient are available with the
following functions:

void sphericalHarmonics (const Point& x , std : : vector <Complexes>& Yml) ;
void sphericalHarmonicsSurfaceGrad (const Point& x , std : : vector <std : : vector <Complexes> >& gradylm) ;

B.17.4 Special functions

Bessel and Hankel functions

Bessel and Hankel functions are available at any order (and also for real orders) for real or complex argument
(through a wrapper to the AMOS library).

• Bessel functions of the first kind JN (x)

277

Real besselJ (Real x , Number N) ;
Complex besselJ (const Complex& z , Real N) ;
Real besselJ0 (Real x) ; / / shortcut f o r order 0 and r e a l case
Complex besselJ0 (const Complex& z) ; / / shortcut f o r order 0 and complex case
Real besselJ1 (Real x) ; / / shortcut f o r order 1 and r e a l case
Complex besselJ1 (const Complex& z) ; / / shortcut f o r order 1 and complex case
Reals besselJ0N (Real x , Number N) ; / / shortcut f o r orders 0 to N and r e a l case

• Bessel functions of the second kind YN (x)

Real besselY (Real x , Number N) ;
Complex besselY (const Complex& z , Real N) ;
Real besselY0 (Real x) ; / / shortcut f o r order 0 and r e a l case
Complex besselY0 (const Complex& z) ; / / shortcut f o r order 0 and complex case
Real besselY1 (Real x) ; / / shortcut f o r order 1 and r e a l case
Complex besselY1 (const Complex& z) ; / / shortcut f o r order 1 and complex case
Reals besselY0N (Real x , Number N) ; / / shortcut f o r orders 0 to N and r e a l case

• Modified Bessel functions of the first kind IN (x)

Real besselI (Real x , Number N) ;
Complex besselI (const Complex& z , Real N) ;
Real besselI0 (Real x) ; / / shortcut f o r order 0 and r e a l case
Complex besselI0 (const Complex& z) ; / / shortcut f o r order 0 and complex case
Real besselI1 (Real x) ; / / shortcut f o r order 1 and r e a l case
Complex besselI1 (const Complex& z) ; / / shortcut f o r order 1 and complex case
Reals besselI0N (Real x , Number N) ; / / shortcut f o r orders 0 to N and r e a l case

• Modified Bessel functions of the second kind KN (x)

Real besselK (Real x , Number N) ;
Complex besselK (const Complex& z , Real N) ;
Real besselK0 (Real x) ; / / shortcut f o r order 0 and r e a l case
Complex besselK0 (const Complex& z) ; / / shortcut f o r order 0 and complex case
Real besselK1 (Real x) ; / / shortcut f o r order 1 and r e a l case
Complex besselK1 (const Complex& z) ; / / shortcut f o r order 1 and complex case
Reals besselK0N (Real x , Number N) ; / / shortcut f o r orders 0 to N and r e a l case

• Hankel functions of the first kind H1N (x)

Complex hankelH1 (Real x , Number N) ; / / general routine f o r r e a l case
Complex hankelH1 (const Complex& z , Real N) ; / / general routine f o r complex case and r e a l order
Complex hankelH10 (Real x) ; / / shortcut f o r order 0 and r e a l case
Complex hankelH10 (const Complex& z) ; / / shortcut f o r order 0 and complex case
Complex hankelH11 (Real x) ; / / shortcut f o r order 1 and r e a l case
Complex hankelH11 (const Complex& z) ; / / shortcut f o r order 1 and complex case
Complexes hankelH10N(Real x , Number N) ; / / shortcut f o r orders 0 to N and r e a l case

• Hankel functions of the second kind H2N (x)

Complex hankelH2 (Real x , Number N) ; / / general routine f o r r e a l case
Complex hankelH2 (const Complex& z , Real N) ; / / general routine f o r complex case and r e a l order
Complex hankelH20 (Real x) ; / / shortcut f o r order 0 and r e a l case
Complex hankelH20 (const Complex& z) ; / / shortcut f o r order 0 and complex case
Complex hankelH21 (Real x) ; / / shortcut f o r order 1 and r e a l case
Complex hankelH21 (const Complex& z) ; / / shortcut f o r order 1 and complex case
Complexes hankelH20N(Real x , Number N) ; / / shortcut f o r orders 0 to N and r e a l case

• Airy and Biry functions

278

Complex airy (Real x , DiffOpType d=_id) ; / / general function f o r r e a l case
Complex airy (const Complex& z , DiffOpType d=_id) ; / / general function f o r complex case
Complex biry (Real x , DiffOpType d=_id) ; / / general function f o r r e a l case
Complex biry (const Complex& z , DiffOpType d=_id) ; / / general function f o r complex case

Gamma and exponential integral functions

The gamma function and related functions are available with the following routines:

Real gammaFunction(Int n) ;
Real gammaFunction(Real x) ;
Complex gammaFunction(const Complex& z) ;
Real logGamma(Real x) ;
Complex logGamma1(const Complex& z) ;
Complex logGamma(const Complex& z) ;
Real diGamma(Int n) ;
Real diGamma(Real x) ;
Complex diGamma(const Complex& z) ;

The exponential integrals functions and related stuff are provided by the following functions:

Complex e1z (const Complex& z) ; / / return E1 (z)
Complex eInz (const Complex& z) ; / / return E1 (z) + gamma + log (z) = \sum_{n>0} (−z) ^n / n n !
Complex expzE1z (const Complex& z) ; / / return exp (z) *E1 (z)
Complex zexpzE1z (const Complex& z) ; / / return z * exp (z) *E1 (z)
Complex ascendingSeriesOfE1 (const Complex& z) ; / / ascending s e r i e s in E1 formula (used f o r

' small ' z)
Complex continuedFractionOfE1 (const Complex& z) ; / / continued f r a c t i o n in E1 formula (used f o r

' large ' z)

The erf function

erf z = 2p
π

∫ z

0
e−t 2

d t

is also available from

complex_t er f (complex_t z) ;

Orthogonal polynomials

Chebyshev, Gegenbauer, Jacobi and Legendre polynomials up to order n are available using the following
functions:

void chebyshevPolynomials (Real x , Reals& val) ;
void gegenbauerPolynomials (Real lambda , Real x , Reals& val) ;
void jacobiPolynomials (r e a l _ t a , r e a l _ t b , r e a l _ t x , Reals& val) ;
void jacobiPolynomials01 (Real a , Real b , Real x , Reals& val) ; / / Jacobi polynomials on [0 , 1]
void legendrePolynomials (Real x , Reals& val) ;
void legendrePolynomialsDerivative (Real x , Reals& val) ;
void legendreFunctions (Real x , std : : vector <Reals>& Pml) ;
void legendreFunctionsDerivative (Real x , const std : : vector <Reals>& Plm , std : : vector <Reals>& dPlm) ;

B.17.5 Computation of polynomial roots

You can use:

• the quadratic method for degree 2 polynomials

Complexes quadratic (Real a , Real b , Real c) ;
Complexes quadratic (Complex a , Complex b , Complex c) ;

279

• the Cardan method for degree 3 polynomials

Complexes cardan (Real a , Real b , Real c , Real d) ;
Complexes cardan (Complex a , Complex b , Complex c , Complex d) ;

• the Ferrari method for degree 4 polynomials

Complexes f e r r a r i (Real a , Real b , Real c , Real d , Real e) ;

B.17.6 Basic quadrature methods and FFT

XLIFE++ proposes some useful basic quadrature methods (rectangle, trapeze, Simpson, Laguerre, adaptive
trapeze) to compute 1D integrals (h = b−a

n) :

rectangle :
∫ b

a
f (t)d t ∼ h

∑
i=0,n−1

f (a + i h)

trapeze :
∫ b

a
f (t)d t ∼ h

2

(
f (a)+4

∑
i=1,n/2

f (a + (2i −1)h)+2
∑

i=1,n/2−1
f (a +2i h)+ f (b)

)
(n even)

Simpson :
∫ b

a
f (t)d t ∼ h

3

(
f (a)+2

∑
i=1,n−1

f (a + i h)+ f (b)

)

with f a real or complex function. They respectively integrate exactly P0 polynomials, P1 polynomials and P3
polynomials and approximate the integral with order 1, 2 and 3.
They compute integrals of real/complex function either given by a C++ function of the form (T being a real
value (float, double, ...) type or a complex type (complex<float>, complex<double>, ...)

T f (r e a l _ t) { . . . }
T f (real_t , Parameters&) { . . . }

or by a vector of values given by an explicit vector or an iterator. So, all the methods are templated by the type T
of function values and possibly by a generic iterator (say Iterator).

T rectangle (number_t n , r e a l _ t h , I t e r a t o r itb , T& intg) ;
T rectangle (const vector <T>& f , r e a l _ t h) ;
T rectangle (T(* f) (r e a l _ t) , r e a l _ t a , r e a l _ t b , number_t n) ;
T rectangle (T(* f) (real_t , Parameters&) , Parameters& pars , r e a l _ t a , r e a l _ t b , number_t n) ;

T trapz (number_t n , r e a l _ t h , I t e r a t o r itb , T& intg) ;
T trapz (const vector <T>& f , r e a l _ t h) ;
T trapz (T(* f) (r e a l _ t) , r e a l _ t a , r e a l _ t b , number_t n) ;
T trapz (T(* f) (real_t , Parameters&) , Parameters& pars , r e a l _ t a , r e a l _ t b , number_t n) ;

T simpson (number_t n , r e a l _ t h , I t e r a t o r itb , T& intg) ;
T simpson (const vector <T>& f , r e a l _ t h) ;
T simpson (T(* f) (r e a l _ t) , r e a l _ t a , r e a l _ t b , number_t n) ;
T simpson (T(* f) (real_t , Parameters&) , Parameters& pars , r e a l _ t a , r e a l _ t b , number_t n) ;

T laguerre (T(* f) (r e a l _ t) , r e a l _ t t0 , r e a l _ t a , number_t nq , vector <real_t >& points ,
vector <real_t >& weights) ;

T laguerre (T(* f) (real_t , Parameters&) , Parameters& pars , r e a l _ t t0 , r e a l _ t a , number_t nq ,
vector <real_t >& points , vector <real_t >& weights) ;

T adaptiveTrapz (T(* f) (r e a l _ t) , r e a l _ t a , r e a l _ t b , r e a l _ t eps=1E−6)
T adaptiveTrapz (T(* f) (real_t , Parameters&) , Parameters& pars , r e a l _ t a , r e a l _ t b , r e a l _ t eps=1E−6)

For instance, to compute

I =
∫ π

0
sin x d x

280

Real f (Real x) { return sin (x) ; }
. . .
Real i r =rectangle (f , 0 . , pi_ , 20) ;
Real i t =trapz (f , 0 . , pi_ , 20) ;
Real i s =simpson (f , 0 . , pi_ , 20) ;
Real ia =adaptiveTrapz (f , 0 . , pi_ , 0.00001) ;

XLIFE++ provides also the standard 1D discrete fast Fourier transform with 2n values:

gk = ∑
j=0,n−1

f j e−2iπ j k
n .

FFT and inverse FFT are computed using some functions addressing real or complex vectors of size 2n :

Number ln =6 , n=64;
Vector<Complex> f (n) , g (n) , f2 (n) ;
for (Number i =0; i <n ; i ++) f [i]= std : : sin (2* i * pi_ /(n−1)) ;
f f t (f , g) ; i f f t (g , f2) ; / / f2 should be c l o s e to f
/ / or
Vector<Complex> fhat= f f t (f) , f i h a t = i f f t (f) ;

If the vector you give is not of 2n length, fft/ifft computation will use only the first 2n values with
2n the greater value less than the vector size. Remember that even the input vector is a real vector

the output is always a complex vector.

Advanced users can also use some functions fft/ifft addressing iterators that can handle any collection of
real or complex values :

template<typename IterA , typename IterB >
void f f t a (I terA i t a , IterB itb , number_t log2n , r e a l _ t q)
void f f t (I terA i t a , IterB itb , number_t log2n)
void i f f t (I terA i t a , IterB itb , number_t log2n)

template<typename T>
vector <complex_t> f f t (const vector <T>& f) ;
vector <complex_t>& f f t (const vector <T>& f , vector <complex_t>& g) ;
vector <complex_t> i f f t (const std : : vector <T>& f) ;
vector <complex_t>& i f f t (const std : : vector <T>& f , std : : vector <complex_t>& g) ;

B.17.7 ODE solvers

XLIFE++ provides some ODE solvers : Euler, Runge-Kutta 4 and Runge-Kutta 45 that is an adaptive step
time solver based on the Dortmand-Prince method (see http://en.wikipedia.org/wiki/Dormand-Prince_
method). All solvers are templated by the type of the state y ∈V involved in the first order differential equation:{

y ′(t) = f (t , y(t)) t ∈]t0, t f [
y(t0) = y0

with f :]t0, t f [×V →V a non stiff function.

The user function f may be any C++ function of the form (T any scalar/vector/matrix type):

T& f (r e a l _ t t , const T& y , T& f t y) ; / / f t y the returned value
/ / f o r instance , with XLiFE++ common types
Real f (Real t , const Real& y , Real& f t y) { . . . ; return f t y ; } / / r e a l scalar ODE
Complex& f (Real t , const Complex& y , Complex& f t y) { . . . ; return f t y ; } / / complex scalar ODE
Reals& f (Real t , const Reals& y , Reals& f t y) { . . . ; return f t y ; } / / r e a l vector ODE
Complexes& f (Real t , const Complexes& y , Complexes& f t y) { . . . ; return f t y ; } / / complex vector ODE

281

http://en.wikipedia.org/wiki/Dormand-Prince_method
http://en.wikipedia.org/wiki/Dormand-Prince_method

ODE solvers are objects of template classes EulerT, RK4T and Ode45T but they can also be invoked by simple
functions

template <typename T>
Vector<T> euler (T& (* f) (Real , const Real& y , Real& f t y) , Real a , Real b , Real dt , const T& y0) ;
Vector<T> rk4 (T& (* f) (Real , const Real& y , Real& f t y) , Real a , Real b , Real dt , const T& y0) ;
pair <Vector<Real > , Vector<T>> ode45 (T& (* f) (Real , const Real& y , Real& f t y) , Real a , Real b , Real

dt , const T& y0 , Real prec) ;

In adaptive RK45 method, the time step may grow to becomes very large. To still get a meaningful number of
times step, the time step is limited by the initial guess dt. Even if the initial guess dt is very large, the method
should be convergent if the problem is not stiff.

The following example deals with the linear pendulum (ODE of order 2):

Real omg=1. , th0=pi_ /4 , thp0 = 0 . ;
Reals& f (Real t , const Reals& y , Reals& f y t)
{ f y t . resize (2) ;

f y t [0]= y [1] ; f y t [1]= −omg*omg*y [0] ;
return f y t ; }

Reals yex (Real t) / / exact solution
{ Reals yy (2 , 0 .) ;

yex [0] = thp0 * sin (omg* t) /omg+ th0 * cos (omg* t) ;
yex [1] = thp0 * cos (omg* t) − th0 *omg* sin (omg* t) ;
return yex ; }

. . .
Real t0 =0 , t f =1 , dt =0.01 , t =t0 , errsup =0;
Reals y0 (2 , 0 .) ; y0 [0]= th0 ; y0 [1]= thp0 ;
Vector<Reals> sol = euler (f , t0 , t f , dt , y0) ;
for (Number i =0; i <sol . s i z e () ; i ++ , t +=dt)

errsup=max(errsup ,norm(sol [i] − yex (t))) ;
theCout<<" euler : nb dt="<<sol . s i z e () <<" error sup = "<<errsup <<eol ;

t =t0 ; errsup =0;
sol = rk4 (f , t0 , t f , dt , y0) ;
for (Number i =0; i <sol . s i z e () ; i ++ , t +=dt)

errsup=max(errsup ,norm(sol [i] − yex (t))) ;
theCout<<" rk4 : nb dt="<<sol . s i z e () <<" error sup = "<<errsup <<eol ;

t =t0 ; errsup =0;
pair <Reals , Vector<Reals>> solp = ode45 (f , t0 , t f , 0 . 1 , y0 , 1E−6) ;
Number n=solp . f i r s t . s i z e () ;
for (Number i =0; i <n ; i ++)

errsup=std : : max(errsup ,norm(solp . second [i] − yex (solp . f i r s t [i]))) ;
theCout<<"ode45 : nb dt="<<n<<" error sup = "<<errsup <<eol ;

Because, ode45 is an adaptive method, the time step is not constant. So the ode45 function return times and
state values as a pair of vectors. The previous code gives

euler : nb dt=101 error sup = 0.00393671
rk4 : nb dt=101 error sup = 6.54499e-11
ode45 : nb dt=12 error sup = 5.25629e-08

showing the advantage to use Ode45!

Contrary to Euler and RK4 method, Ode45 handles some internal parameters : nbtry_ the maximum
number of tries (12) when adapting the time step, minscale_(0.125) and maxscale_(4) to limit the

variation of the time step at each iteration. If you want modify these internal parameters, you have to use
an object of the Ode45T class; see the dev documentation.

282

C CMAKE tutorial

CMAKE (http://cmake.org), as a cross-platform builder, only needs a configuration file named CMakeLists.txt,
at the root directory of the software you develop, so-called Source directory. This configuration file is indepen-
dent of the compiler and the platform. In order to generate native makefiles or workspaces of your favourite
IDE (Visual Studio, Xcode, Eclipse, CodeBlocks, . . .), CMAKE needs another directory, so-called build directory,
in which files generated during the build process will be written.
The build directory is recommended not to be the source directory. For XLIFE++ compilation, we suggest you to
set the build directory as a subdirectory of XLIFE++ install directory, with the name build for instance.

C.1 On the command line

On LINUX and MAC OS, you can use the cmake command or its default GUI ccmake. On WINDOWS, you can use
the cmake.exe command.

Figure C.1: ccmake (MacOS, Linux)

As it was said during introduction, a CMAKE call needs 2 directories : the source directory (command-line option
-S) and the build directory (command-line option -B), but there is an easier way to call CMAKE: by calling it
from the build directory and giving only the source directory, as in the following :

cmake r e l a t i v e /path/ to /CMakeLists . t x t [options]
ccmake [options] r e l a t i v e /path/ to /CMakeLists . t x t

C.2 Through GUI applications

When running CMAKE GUI application, you have to set the source directory and the build directory. Then, you
click the Configure button. It will ask ou the generator and the compiler you want. Then, you click the Generate
button, to generate your IDE project file or your Makefile.

283

http://cmake .org

Figure C.2: CMAKE application (MacOS on the left and Windows on the right)

C.3 CMAKE options and cache entries

C.3.1 On the command line

The CMAKE help will give you the full list of command-line options. Only 2 are eventually useful:

-G to define the generator. By default, the cmake command generates a Makefile. This is the "Unix Makefiles"
generator on LINUX and MAC OS or "MinGW Makefiles" generator on WINDOWS. But you can use other
generators to have IDE files for your favorite IDE, such as Eclipse, CodeBlocks, Xcode, Visual Studio, . . . :

cmake r e l a t i v e /path/ to /CMakeLists . t x t −G <generator_name> [options]

The following command chooses for instance to use codeblocks on unix platform:

cmake r e l a t i v e /path/ to /CMakeLists . t x t −G "CodeBlocks − Unix Makefiles " [options]

Please read the cmake command help to known the potential list of available generators on your computer.

-D to define cache entries. Cache entries can be shown as dedicated configuration options for the software you
want to build.

cmake r e l a t i v e /path/ to /CMakeLists . t x t [−G <generator_name >] −DKEY1=value1 −DKEY2=value2
−DKEY3=value3 . . .

Please notice that the key is always sticked to the -D option, and that the equal sign is sticked to
both key and value

C.3.2 Through GUI applications

Available cache entries appears in the main frame after the first click on configure. You can organise them
by grouping (cache entries beginning with the same prefix are in the same group whose name is the prefix in
common) or by showing/hiding advanced cache entries.
Each time you change th evalue of one or several cache entries, you have to click on the Configure button again,
before clicking on Generate

284

	1 Introduction
	1.1 What XLiFE++ is
	1.2 How to download XLiFE++
	1.2.1 How XLiFE++ sources are organized
	1.2.2 How XLiFE++ binaries are organized

	1.3 Requirements
	1.3.1 Extensions
	1.3.2 Installation requirements

	1.4 Main installation and usage process, with CMake
	1.4.1 Configuration step
	1.4.2 How to set compilers
	1.4.3 How to set external dependencies
	1.4.4 Installation of binaries under Windows
	1.4.5 Compilation of a program using XLiFE++
	1.4.6 Example

	1.5 Alternative installation and usage procedure, without cmake
	1.5.1 Installation process
	1.5.2 Compilation of a program using XLiFE++

	1.6 Alternative installation and usage process, with Docker
	1.7 Writing a program using XLiFE++
	1.8 License
	1.9 Credits

	2 Getting started
	2.1 The variational approach
	2.2 How does it work ?

	3 Examples
	3.1 1D problems
	3.1.1 Dirichlet condition
	3.1.2 Robin condition

	3.2 Laplace Problems
	3.2.1 Neumann condition
	3.2.2 Dirichlet condition
	3.2.3 Periodic condition
	3.2.4 Transmission condition
	3.2.5 Average condition

	3.3 Discontinuous Galerkin method for 2D Dirichlet problem
	3.4 Mixed formulation using P0 and Raviart-Thomas elements
	3.5 Fictitious domain method
	3.6 2D Maxwell equations using Nedelec elements
	3.7 Eigenvalues and eigenvectors of Laplace operator
	3.8 3D Helmholtz problem using single layer potential integral equation
	3.9 2D Helmholtz problem coupling FEM and integral representation
	3.10 2D Helmholtz problem coupling FEM and BEM
	3.11 3D Maxwell problem using EFIE
	3.12 2D Elasticity problem
	3.13 2D Bilaplacian problem
	3.14 Solving wave equation

	4 XLiFE++ written in C++
	4.1 Instruction sequence
	4.2 Variables
	4.3 Basic operations
	4.4 if, switch, for and while
	4.5 In/out operations
	4.6 Using standard functions
	4.7 Use of classes
	4.8 Understanding memory usage
	4.9 Main user's classes of XLiFE++

	5 Initialization and global variables
	5.1 The init function
	5.2 Managing your own options
	5.3 Using XLiFE++ with global parameters
	5.3.1 Global constants and objects
	5.3.2 Multi-threading
	5.3.3 The verbosity

	6 Mesh definition
	6.1 Defining geometries
	6.1.1 Segments
	6.1.2 Elliptic and circular arcs
	6.1.3 Parametrized arcs
	6.1.4 Spline arcs
	6.1.5 Polygons and polygon-likes
	6.1.6 Ellipses and disks
	6.1.7 Parametrized surface
	6.1.8 Spline surface
	6.1.9 Polyhedra and polyhedron-likes
	6.1.10 Ellipsoids and balls
	6.1.11 Trunks and trunk-likes
	6.1.12 Definition of a geometry from its boundary
	6.1.13 Combining geometries

	6.2 Transformations on geometries
	6.2.1 Canonical transformations
	6.2.2 Composition of transformations
	6.2.3 Applying transformations

	6.3 Extrusion of geometries
	6.3.1 How to apply an extrusion ?
	6.3.2 How to define names of lateral domains of an extrusion ?
	6.3.3 Example: definition of a conesphere

	6.4 Defining a mesh from a geometry
	6.4.1 Structured internal meshing tools: structured generator
	6.4.2 Unstructured internal meshing tools: subdivision generator
	6.4.3 Meshing tool with nested call to Gmsh: gmsh generator

	6.5 Open Cascade extension
	6.6 Extrude a mesh
	6.7 Split mesh element
	6.8 Loading a mesh from a file
	6.9 Transformations on meshes
	6.10 Using geometrical domain
	6.10.1 Retrieving domains
	6.10.2 Dealing with normals of a domain
	6.10.3 Map of domains
	6.10.4 Assign properties to domains
	6.10.5 Create domain of sides
	6.10.6 Set operation on domain
	6.10.7 Cracking a domain
	6.10.8 Having statistics about the mesh quality of a domain
	6.10.9 Summary of domain operations

	6.11 Dealing with parametrizations of geometrical domains
	6.12 A full example with periodic cavities

	7 Defining the problem
	7.1 Domains, spaces, unknowns and test functions
	7.1.1 Domains and finite element spaces
	7.1.2 Spectral spaces
	7.1.3 Unknowns and test functions
	7.1.4 Dealing with collections

	7.2 Forms
	7.2.1 Operators on unknowns
	7.2.2 Operators on kernel
	7.2.3 Available kernels
	7.2.4 Interpolated function in operator
	7.2.5 Additional operation in operator
	7.2.6 Integration method
	7.2.7 Integral calculation tools
	7.2.8 Define bilinear form involving unknowns on different meshes
	7.2.9 Dealing with non standard bilinear form - advanced usage -

	7.3 Essential conditions

	8 Solving the problem
	8.1 Algebraic representation
	8.1.1 Representing linear and bilinear forms
	8.1.2 Dealing with essential conditions
	8.1.3 Delay computation
	8.1.4 TermVector in details
	8.1.5 TermMatrix in details
	8.1.6 HMatrix
	8.1.7 Projector

	8.2 Linear Solvers
	8.2.1 Direct solvers
	8.2.2 Iterative solvers

	8.3 Eigen solvers
	8.3.1 How to call an eigen solver ?
	8.3.2 Results
	8.3.3 Calling sequence
	8.3.4 Advanced usage of Arpack

	9 Post processing and outputs
	9.1 Integral representation
	9.1.1 Direct method
	9.1.2 Matrix method
	9.1.3 Kernel interpolation method

	9.2 Output functions
	9.2.1 Print objects
	9.2.2 Export TermMatrix and TermVector

	9.3 Graphical exploitation

	A External libraries
	A.1 How to install Blas and Lapack libraries
	A.2 How to install UmfPack library
	A.3 How to install Arpack library
	A.4 How to install MinGW 64 bits on Windows

	B Utility types in details
	B.1 String, Strings
	B.2 Int, Dimen, Number, Numbers
	B.3 Real, Complex and Reals
	B.4 Angle unit
	B.5 Point
	B.6 Vector
	B.7 Matrix
	B.8 Parameters
	B.8.1 The Parameter object
	B.8.2 The Parameters object: list of Parameter

	B.9 Function
	B.9.1 User function and object function
	B.9.2 Advanced user

	B.10 Kernel
	B.10.1 User kernels
	B.10.2 Dealing with normal vectors

	B.11 Tabular
	B.12 SymbolicFunction
	B.13 Parametrization
	B.14 Splines
	B.14.1 C2 spline
	B.14.2 Catmull-Rom spline
	B.14.3 Bezier curve
	B.14.4 B-Spline
	B.14.5 Spline surface (nurbs)

	B.15 Timer
	B.16 Memory
	B.17 Mathematical resources
	B.17.1 Random generators
	B.17.2 Gauss formulae
	B.17.3 Exact solutions
	B.17.4 Special functions
	B.17.5 Computation of polynomial roots
	B.17.6 Basic quadrature methods and FFT
	B.17.7 ODE solvers

	C CMake tutorial
	C.1 On the command line
	C.2 Through GUI applications
	C.3 CMake options and cache entries
	C.3.1 On the command line
	C.3.2 Through GUI applications

