stl_multimap.h

Go to the documentation of this file.
00001 // Multimap implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002, 2004, 2005, 2006 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 2, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // You should have received a copy of the GNU General Public License along
00017 // with this library; see the file COPYING.  If not, write to the Free
00018 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
00019 // USA.
00020 
00021 // As a special exception, you may use this file as part of a free software
00022 // library without restriction.  Specifically, if other files instantiate
00023 // templates or use macros or inline functions from this file, or you compile
00024 // this file and link it with other files to produce an executable, this
00025 // file does not by itself cause the resulting executable to be covered by
00026 // the GNU General Public License.  This exception does not however
00027 // invalidate any other reasons why the executable file might be covered by
00028 // the GNU General Public License.
00029 
00030 /*
00031  *
00032  * Copyright (c) 1994
00033  * Hewlett-Packard Company
00034  *
00035  * Permission to use, copy, modify, distribute and sell this software
00036  * and its documentation for any purpose is hereby granted without fee,
00037  * provided that the above copyright notice appear in all copies and
00038  * that both that copyright notice and this permission notice appear
00039  * in supporting documentation.  Hewlett-Packard Company makes no
00040  * representations about the suitability of this software for any
00041  * purpose.  It is provided "as is" without express or implied warranty.
00042  *
00043  *
00044  * Copyright (c) 1996,1997
00045  * Silicon Graphics Computer Systems, Inc.
00046  *
00047  * Permission to use, copy, modify, distribute and sell this software
00048  * and its documentation for any purpose is hereby granted without fee,
00049  * provided that the above copyright notice appear in all copies and
00050  * that both that copyright notice and this permission notice appear
00051  * in supporting documentation.  Silicon Graphics makes no
00052  * representations about the suitability of this software for any
00053  * purpose.  It is provided "as is" without express or implied warranty.
00054  */
00055 
00056 /** @file stl_multimap.h
00057  *  This is an internal header file, included by other library headers.
00058  *  You should not attempt to use it directly.
00059  */
00060 
00061 #ifndef _MULTIMAP_H
00062 #define _MULTIMAP_H 1
00063 
00064 #include <bits/concept_check.h>
00065 
00066 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
00067 
00068   /**
00069    *  @brief A standard container made up of (key,value) pairs, which can be
00070    *  retrieved based on a key, in logarithmic time.
00071    *
00072    *  @ingroup Containers
00073    *  @ingroup Assoc_containers
00074    *
00075    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00076    *  <a href="tables.html#66">reversible container</a>, and an
00077    *  <a href="tables.html#69">associative container</a> (using equivalent
00078    *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
00079    *  is T, and the value_type is std::pair<const Key,T>.
00080    *
00081    *  Multimaps support bidirectional iterators.
00082    *
00083    *  @if maint
00084    *  The private tree data is declared exactly the same way for map and
00085    *  multimap; the distinction is made entirely in how the tree functions are
00086    *  called (*_unique versus *_equal, same as the standard).
00087    *  @endif
00088   */
00089   template <typename _Key, typename _Tp,
00090         typename _Compare = std::less<_Key>,
00091         typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
00092     class multimap
00093     {
00094     public:
00095       typedef _Key                                          key_type;
00096       typedef _Tp                                           mapped_type;
00097       typedef std::pair<const _Key, _Tp>                    value_type;
00098       typedef _Compare                                      key_compare;
00099       typedef _Alloc                                        allocator_type;
00100 
00101     private:
00102       // concept requirements
00103       typedef typename _Alloc::value_type                   _Alloc_value_type;
00104       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
00105       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
00106                 _BinaryFunctionConcept)
00107       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)    
00108 
00109     public:
00110       class value_compare
00111       : public std::binary_function<value_type, value_type, bool>
00112       {
00113     friend class multimap<_Key, _Tp, _Compare, _Alloc>;
00114       protected:
00115     _Compare comp;
00116 
00117     value_compare(_Compare __c)
00118     : comp(__c) { }
00119 
00120       public:
00121     bool operator()(const value_type& __x, const value_type& __y) const
00122     { return comp(__x.first, __y.first); }
00123       };
00124 
00125     private:
00126       /// @if maint  This turns a red-black tree into a [multi]map.  @endif
00127       typedef typename _Alloc::template rebind<value_type>::other 
00128         _Pair_alloc_type;
00129 
00130       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
00131                key_compare, _Pair_alloc_type> _Rep_type;
00132       /// @if maint  The actual tree structure.  @endif
00133       _Rep_type _M_t;
00134 
00135     public:
00136       // many of these are specified differently in ISO, but the following are
00137       // "functionally equivalent"
00138       typedef typename _Pair_alloc_type::pointer         pointer;
00139       typedef typename _Pair_alloc_type::const_pointer   const_pointer;
00140       typedef typename _Pair_alloc_type::reference       reference;
00141       typedef typename _Pair_alloc_type::const_reference const_reference;
00142       typedef typename _Rep_type::iterator               iterator;
00143       typedef typename _Rep_type::const_iterator         const_iterator;
00144       typedef typename _Rep_type::size_type              size_type;
00145       typedef typename _Rep_type::difference_type        difference_type;
00146       typedef typename _Rep_type::reverse_iterator       reverse_iterator;
00147       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
00148 
00149       // [23.3.2] construct/copy/destroy
00150       // (get_allocator() is also listed in this section)
00151       /**
00152        *  @brief  Default constructor creates no elements.
00153        */
00154       multimap()
00155       : _M_t(_Compare(), allocator_type()) { }
00156 
00157       // for some reason this was made a separate function
00158       /**
00159        *  @brief  Default constructor creates no elements.
00160        */
00161       explicit
00162       multimap(const _Compare& __comp,
00163            const allocator_type& __a = allocator_type())
00164       : _M_t(__comp, __a) { }
00165 
00166       /**
00167        *  @brief  %Multimap copy constructor.
00168        *  @param  x  A %multimap of identical element and allocator types.
00169        *
00170        *  The newly-created %multimap uses a copy of the allocation object used
00171        *  by @a x.
00172        */
00173       multimap(const multimap& __x)
00174       : _M_t(__x._M_t) { }
00175 
00176       /**
00177        *  @brief  Builds a %multimap from a range.
00178        *  @param  first  An input iterator.
00179        *  @param  last  An input iterator.
00180        *
00181        *  Create a %multimap consisting of copies of the elements from
00182        *  [first,last).  This is linear in N if the range is already sorted,
00183        *  and NlogN otherwise (where N is distance(first,last)).
00184        */
00185       template <typename _InputIterator>
00186         multimap(_InputIterator __first, _InputIterator __last)
00187     : _M_t(_Compare(), allocator_type())
00188         { _M_t._M_insert_equal(__first, __last); }
00189 
00190       /**
00191        *  @brief  Builds a %multimap from a range.
00192        *  @param  first  An input iterator.
00193        *  @param  last  An input iterator.
00194        *  @param  comp  A comparison functor.
00195        *  @param  a  An allocator object.
00196        *
00197        *  Create a %multimap consisting of copies of the elements from
00198        *  [first,last).  This is linear in N if the range is already sorted,
00199        *  and NlogN otherwise (where N is distance(first,last)).
00200        */
00201       template <typename _InputIterator>
00202         multimap(_InputIterator __first, _InputIterator __last,
00203          const _Compare& __comp,
00204          const allocator_type& __a = allocator_type())
00205         : _M_t(__comp, __a)
00206         { _M_t._M_insert_equal(__first, __last); }
00207 
00208       // FIXME There is no dtor declared, but we should have something generated
00209       // by Doxygen.  I don't know what tags to add to this paragraph to make
00210       // that happen:
00211       /**
00212        *  The dtor only erases the elements, and note that if the elements
00213        *  themselves are pointers, the pointed-to memory is not touched in any
00214        *  way.  Managing the pointer is the user's responsibilty.
00215        */
00216 
00217       /**
00218        *  @brief  %Multimap assignment operator.
00219        *  @param  x  A %multimap of identical element and allocator types.
00220        *
00221        *  All the elements of @a x are copied, but unlike the copy constructor,
00222        *  the allocator object is not copied.
00223        */
00224       multimap&
00225       operator=(const multimap& __x)
00226       {
00227     _M_t = __x._M_t;
00228     return *this;
00229       }
00230 
00231       /// Get a copy of the memory allocation object.
00232       allocator_type
00233       get_allocator() const
00234       { return _M_t.get_allocator(); }
00235 
00236       // iterators
00237       /**
00238        *  Returns a read/write iterator that points to the first pair in the
00239        *  %multimap.  Iteration is done in ascending order according to the
00240        *  keys.
00241        */
00242       iterator
00243       begin()
00244       { return _M_t.begin(); }
00245 
00246       /**
00247        *  Returns a read-only (constant) iterator that points to the first pair
00248        *  in the %multimap.  Iteration is done in ascending order according to
00249        *  the keys.
00250        */
00251       const_iterator
00252       begin() const
00253       { return _M_t.begin(); }
00254 
00255       /**
00256        *  Returns a read/write iterator that points one past the last pair in
00257        *  the %multimap.  Iteration is done in ascending order according to the
00258        *  keys.
00259        */
00260       iterator
00261       end()
00262       { return _M_t.end(); }
00263 
00264       /**
00265        *  Returns a read-only (constant) iterator that points one past the last
00266        *  pair in the %multimap.  Iteration is done in ascending order according
00267        *  to the keys.
00268        */
00269       const_iterator
00270       end() const
00271       { return _M_t.end(); }
00272 
00273       /**
00274        *  Returns a read/write reverse iterator that points to the last pair in
00275        *  the %multimap.  Iteration is done in descending order according to the
00276        *  keys.
00277        */
00278       reverse_iterator
00279       rbegin()
00280       { return _M_t.rbegin(); }
00281 
00282       /**
00283        *  Returns a read-only (constant) reverse iterator that points to the
00284        *  last pair in the %multimap.  Iteration is done in descending order
00285        *  according to the keys.
00286        */
00287       const_reverse_iterator
00288       rbegin() const
00289       { return _M_t.rbegin(); }
00290 
00291       /**
00292        *  Returns a read/write reverse iterator that points to one before the
00293        *  first pair in the %multimap.  Iteration is done in descending order
00294        *  according to the keys.
00295        */
00296       reverse_iterator
00297       rend()
00298       { return _M_t.rend(); }
00299 
00300       /**
00301        *  Returns a read-only (constant) reverse iterator that points to one
00302        *  before the first pair in the %multimap.  Iteration is done in
00303        *  descending order according to the keys.
00304        */
00305       const_reverse_iterator
00306       rend() const
00307       { return _M_t.rend(); }
00308 
00309       // capacity
00310       /** Returns true if the %multimap is empty.  */
00311       bool
00312       empty() const
00313       { return _M_t.empty(); }
00314 
00315       /** Returns the size of the %multimap.  */
00316       size_type
00317       size() const
00318       { return _M_t.size(); }
00319 
00320       /** Returns the maximum size of the %multimap.  */
00321       size_type
00322       max_size() const
00323       { return _M_t.max_size(); }
00324 
00325       // modifiers
00326       /**
00327        *  @brief Inserts a std::pair into the %multimap.
00328        *  @param  x  Pair to be inserted (see std::make_pair for easy creation
00329        *             of pairs).
00330        *  @return An iterator that points to the inserted (key,value) pair.
00331        *
00332        *  This function inserts a (key, value) pair into the %multimap.
00333        *  Contrary to a std::map the %multimap does not rely on unique keys and
00334        *  thus multiple pairs with the same key can be inserted.
00335        *
00336        *  Insertion requires logarithmic time.
00337        */
00338       iterator
00339       insert(const value_type& __x)
00340       { return _M_t._M_insert_equal(__x); }
00341 
00342       /**
00343        *  @brief Inserts a std::pair into the %multimap.
00344        *  @param  position  An iterator that serves as a hint as to where the
00345        *                    pair should be inserted.
00346        *  @param  x  Pair to be inserted (see std::make_pair for easy creation
00347        *             of pairs).
00348        *  @return An iterator that points to the inserted (key,value) pair.
00349        *
00350        *  This function inserts a (key, value) pair into the %multimap.
00351        *  Contrary to a std::map the %multimap does not rely on unique keys and
00352        *  thus multiple pairs with the same key can be inserted.
00353        *  Note that the first parameter is only a hint and can potentially
00354        *  improve the performance of the insertion process.  A bad hint would
00355        *  cause no gains in efficiency.
00356        *
00357        *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
00358        *  for more on "hinting".
00359        *
00360        *  Insertion requires logarithmic time (if the hint is not taken).
00361        */
00362       iterator
00363       insert(iterator __position, const value_type& __x)
00364       { return _M_t._M_insert_equal(__position, __x); }
00365 
00366       /**
00367        *  @brief A template function that attemps to insert a range of elements.
00368        *  @param  first  Iterator pointing to the start of the range to be
00369        *                 inserted.
00370        *  @param  last  Iterator pointing to the end of the range.
00371        *
00372        *  Complexity similar to that of the range constructor.
00373        */
00374       template <typename _InputIterator>
00375         void
00376         insert(_InputIterator __first, _InputIterator __last)
00377         { _M_t._M_insert_equal(__first, __last); }
00378 
00379       /**
00380        *  @brief Erases an element from a %multimap.
00381        *  @param  position  An iterator pointing to the element to be erased.
00382        *
00383        *  This function erases an element, pointed to by the given iterator,
00384        *  from a %multimap.  Note that this function only erases the element,
00385        *  and that if the element is itself a pointer, the pointed-to memory is
00386        *  not touched in any way.  Managing the pointer is the user's
00387        *  responsibilty.
00388        */
00389       void
00390       erase(iterator __position)
00391       { _M_t.erase(__position); }
00392 
00393       /**
00394        *  @brief Erases elements according to the provided key.
00395        *  @param  x  Key of element to be erased.
00396        *  @return  The number of elements erased.
00397        *
00398        *  This function erases all elements located by the given key from a
00399        *  %multimap.
00400        *  Note that this function only erases the element, and that if
00401        *  the element is itself a pointer, the pointed-to memory is not touched
00402        *  in any way.  Managing the pointer is the user's responsibilty.
00403        */
00404       size_type
00405       erase(const key_type& __x)
00406       { return _M_t.erase(__x); }
00407 
00408       /**
00409        *  @brief Erases a [first,last) range of elements from a %multimap.
00410        *  @param  first  Iterator pointing to the start of the range to be
00411        *                 erased.
00412        *  @param  last  Iterator pointing to the end of the range to be erased.
00413        *
00414        *  This function erases a sequence of elements from a %multimap.
00415        *  Note that this function only erases the elements, and that if
00416        *  the elements themselves are pointers, the pointed-to memory is not
00417        *  touched in any way.  Managing the pointer is the user's responsibilty.
00418        */
00419       void
00420       erase(iterator __first, iterator __last)
00421       { _M_t.erase(__first, __last); }
00422 
00423       /**
00424        *  @brief  Swaps data with another %multimap.
00425        *  @param  x  A %multimap of the same element and allocator types.
00426        *
00427        *  This exchanges the elements between two multimaps in constant time.
00428        *  (It is only swapping a pointer, an integer, and an instance of
00429        *  the @c Compare type (which itself is often stateless and empty), so it
00430        *  should be quite fast.)
00431        *  Note that the global std::swap() function is specialized such that
00432        *  std::swap(m1,m2) will feed to this function.
00433        */
00434       void
00435       swap(multimap& __x)
00436       { _M_t.swap(__x._M_t); }
00437 
00438       /**
00439        *  Erases all elements in a %multimap.  Note that this function only
00440        *  erases the elements, and that if the elements themselves are pointers,
00441        *  the pointed-to memory is not touched in any way.  Managing the pointer
00442        *  is the user's responsibilty.
00443        */
00444       void
00445       clear()
00446       { _M_t.clear(); }
00447 
00448       // observers
00449       /**
00450        *  Returns the key comparison object out of which the %multimap
00451        *  was constructed.
00452        */
00453       key_compare
00454       key_comp() const
00455       { return _M_t.key_comp(); }
00456 
00457       /**
00458        *  Returns a value comparison object, built from the key comparison
00459        *  object out of which the %multimap was constructed.
00460        */
00461       value_compare
00462       value_comp() const
00463       { return value_compare(_M_t.key_comp()); }
00464 
00465       // multimap operations
00466       /**
00467        *  @brief Tries to locate an element in a %multimap.
00468        *  @param  x  Key of (key, value) pair to be located.
00469        *  @return  Iterator pointing to sought-after element,
00470        *           or end() if not found.
00471        *
00472        *  This function takes a key and tries to locate the element with which
00473        *  the key matches.  If successful the function returns an iterator
00474        *  pointing to the sought after %pair.  If unsuccessful it returns the
00475        *  past-the-end ( @c end() ) iterator.
00476        */
00477       iterator
00478       find(const key_type& __x)
00479       { return _M_t.find(__x); }
00480 
00481       /**
00482        *  @brief Tries to locate an element in a %multimap.
00483        *  @param  x  Key of (key, value) pair to be located.
00484        *  @return  Read-only (constant) iterator pointing to sought-after
00485        *           element, or end() if not found.
00486        *
00487        *  This function takes a key and tries to locate the element with which
00488        *  the key matches.  If successful the function returns a constant
00489        *  iterator pointing to the sought after %pair.  If unsuccessful it
00490        *  returns the past-the-end ( @c end() ) iterator.
00491        */
00492       const_iterator
00493       find(const key_type& __x) const
00494       { return _M_t.find(__x); }
00495 
00496       /**
00497        *  @brief Finds the number of elements with given key.
00498        *  @param  x  Key of (key, value) pairs to be located.
00499        *  @return Number of elements with specified key.
00500        */
00501       size_type
00502       count(const key_type& __x) const
00503       { return _M_t.count(__x); }
00504 
00505       /**
00506        *  @brief Finds the beginning of a subsequence matching given key.
00507        *  @param  x  Key of (key, value) pair to be located.
00508        *  @return  Iterator pointing to first element equal to or greater
00509        *           than key, or end().
00510        *
00511        *  This function returns the first element of a subsequence of elements
00512        *  that matches the given key.  If unsuccessful it returns an iterator
00513        *  pointing to the first element that has a greater value than given key
00514        *  or end() if no such element exists.
00515        */
00516       iterator
00517       lower_bound(const key_type& __x)
00518       { return _M_t.lower_bound(__x); }
00519 
00520       /**
00521        *  @brief Finds the beginning of a subsequence matching given key.
00522        *  @param  x  Key of (key, value) pair to be located.
00523        *  @return  Read-only (constant) iterator pointing to first element
00524        *           equal to or greater than key, or end().
00525        *
00526        *  This function returns the first element of a subsequence of elements
00527        *  that matches the given key.  If unsuccessful the iterator will point
00528        *  to the next greatest element or, if no such greater element exists, to
00529        *  end().
00530        */
00531       const_iterator
00532       lower_bound(const key_type& __x) const
00533       { return _M_t.lower_bound(__x); }
00534 
00535       /**
00536        *  @brief Finds the end of a subsequence matching given key.
00537        *  @param  x  Key of (key, value) pair to be located.
00538        *  @return Iterator pointing to the first element
00539        *          greater than key, or end().
00540        */
00541       iterator
00542       upper_bound(const key_type& __x)
00543       { return _M_t.upper_bound(__x); }
00544 
00545       /**
00546        *  @brief Finds the end of a subsequence matching given key.
00547        *  @param  x  Key of (key, value) pair to be located.
00548        *  @return  Read-only (constant) iterator pointing to first iterator
00549        *           greater than key, or end().
00550        */
00551       const_iterator
00552       upper_bound(const key_type& __x) const
00553       { return _M_t.upper_bound(__x); }
00554 
00555       /**
00556        *  @brief Finds a subsequence matching given key.
00557        *  @param  x  Key of (key, value) pairs to be located.
00558        *  @return  Pair of iterators that possibly points to the subsequence
00559        *           matching given key.
00560        *
00561        *  This function is equivalent to
00562        *  @code
00563        *    std::make_pair(c.lower_bound(val),
00564        *                   c.upper_bound(val))
00565        *  @endcode
00566        *  (but is faster than making the calls separately).
00567        */
00568       std::pair<iterator, iterator>
00569       equal_range(const key_type& __x)
00570       { return _M_t.equal_range(__x); }
00571 
00572       /**
00573        *  @brief Finds a subsequence matching given key.
00574        *  @param  x  Key of (key, value) pairs to be located.
00575        *  @return  Pair of read-only (constant) iterators that possibly points
00576        *           to the subsequence matching given key.
00577        *
00578        *  This function is equivalent to
00579        *  @code
00580        *    std::make_pair(c.lower_bound(val),
00581        *                   c.upper_bound(val))
00582        *  @endcode
00583        *  (but is faster than making the calls separately).
00584        */
00585       std::pair<const_iterator, const_iterator>
00586       equal_range(const key_type& __x) const
00587       { return _M_t.equal_range(__x); }
00588 
00589       template <typename _K1, typename _T1, typename _C1, typename _A1>
00590         friend bool
00591         operator== (const multimap<_K1, _T1, _C1, _A1>&,
00592             const multimap<_K1, _T1, _C1, _A1>&);
00593 
00594       template <typename _K1, typename _T1, typename _C1, typename _A1>
00595         friend bool
00596         operator< (const multimap<_K1, _T1, _C1, _A1>&,
00597            const multimap<_K1, _T1, _C1, _A1>&);
00598   };
00599 
00600   /**
00601    *  @brief  Multimap equality comparison.
00602    *  @param  x  A %multimap.
00603    *  @param  y  A %multimap of the same type as @a x.
00604    *  @return  True iff the size and elements of the maps are equal.
00605    *
00606    *  This is an equivalence relation.  It is linear in the size of the
00607    *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
00608    *  and if corresponding elements compare equal.
00609   */
00610   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00611     inline bool
00612     operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00613                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00614     { return __x._M_t == __y._M_t; }
00615 
00616   /**
00617    *  @brief  Multimap ordering relation.
00618    *  @param  x  A %multimap.
00619    *  @param  y  A %multimap of the same type as @a x.
00620    *  @return  True iff @a x is lexicographically less than @a y.
00621    *
00622    *  This is a total ordering relation.  It is linear in the size of the
00623    *  multimaps.  The elements must be comparable with @c <.
00624    *
00625    *  See std::lexicographical_compare() for how the determination is made.
00626   */
00627   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00628     inline bool
00629     operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00630               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00631     { return __x._M_t < __y._M_t; }
00632 
00633   /// Based on operator==
00634   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00635     inline bool
00636     operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00637                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00638     { return !(__x == __y); }
00639 
00640   /// Based on operator<
00641   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00642     inline bool
00643     operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00644               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00645     { return __y < __x; }
00646 
00647   /// Based on operator<
00648   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00649     inline bool
00650     operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00651                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00652     { return !(__y < __x); }
00653 
00654   /// Based on operator<
00655   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00656     inline bool
00657     operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00658                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00659     { return !(__x < __y); }
00660 
00661   /// See std::multimap::swap().
00662   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00663     inline void
00664     swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
00665          multimap<_Key, _Tp, _Compare, _Alloc>& __y)
00666     { __x.swap(__y); }
00667 
00668 _GLIBCXX_END_NESTED_NAMESPACE
00669 
00670 #endif /* _MULTIMAP_H */

Generated on Thu Nov 1 13:12:33 2007 for libstdc++ by  doxygen 1.5.1