00001 // Multimap implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2004, 2005, 2006 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 2, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // You should have received a copy of the GNU General Public License along 00017 // with this library; see the file COPYING. If not, write to the Free 00018 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 00019 // USA. 00020 00021 // As a special exception, you may use this file as part of a free software 00022 // library without restriction. Specifically, if other files instantiate 00023 // templates or use macros or inline functions from this file, or you compile 00024 // this file and link it with other files to produce an executable, this 00025 // file does not by itself cause the resulting executable to be covered by 00026 // the GNU General Public License. This exception does not however 00027 // invalidate any other reasons why the executable file might be covered by 00028 // the GNU General Public License. 00029 00030 /* 00031 * 00032 * Copyright (c) 1994 00033 * Hewlett-Packard Company 00034 * 00035 * Permission to use, copy, modify, distribute and sell this software 00036 * and its documentation for any purpose is hereby granted without fee, 00037 * provided that the above copyright notice appear in all copies and 00038 * that both that copyright notice and this permission notice appear 00039 * in supporting documentation. Hewlett-Packard Company makes no 00040 * representations about the suitability of this software for any 00041 * purpose. It is provided "as is" without express or implied warranty. 00042 * 00043 * 00044 * Copyright (c) 1996,1997 00045 * Silicon Graphics Computer Systems, Inc. 00046 * 00047 * Permission to use, copy, modify, distribute and sell this software 00048 * and its documentation for any purpose is hereby granted without fee, 00049 * provided that the above copyright notice appear in all copies and 00050 * that both that copyright notice and this permission notice appear 00051 * in supporting documentation. Silicon Graphics makes no 00052 * representations about the suitability of this software for any 00053 * purpose. It is provided "as is" without express or implied warranty. 00054 */ 00055 00056 /** @file stl_multimap.h 00057 * This is an internal header file, included by other library headers. 00058 * You should not attempt to use it directly. 00059 */ 00060 00061 #ifndef _MULTIMAP_H 00062 #define _MULTIMAP_H 1 00063 00064 #include <bits/concept_check.h> 00065 00066 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD) 00067 00068 /** 00069 * @brief A standard container made up of (key,value) pairs, which can be 00070 * retrieved based on a key, in logarithmic time. 00071 * 00072 * @ingroup Containers 00073 * @ingroup Assoc_containers 00074 * 00075 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00076 * <a href="tables.html#66">reversible container</a>, and an 00077 * <a href="tables.html#69">associative container</a> (using equivalent 00078 * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type 00079 * is T, and the value_type is std::pair<const Key,T>. 00080 * 00081 * Multimaps support bidirectional iterators. 00082 * 00083 * @if maint 00084 * The private tree data is declared exactly the same way for map and 00085 * multimap; the distinction is made entirely in how the tree functions are 00086 * called (*_unique versus *_equal, same as the standard). 00087 * @endif 00088 */ 00089 template <typename _Key, typename _Tp, 00090 typename _Compare = std::less<_Key>, 00091 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00092 class multimap 00093 { 00094 public: 00095 typedef _Key key_type; 00096 typedef _Tp mapped_type; 00097 typedef std::pair<const _Key, _Tp> value_type; 00098 typedef _Compare key_compare; 00099 typedef _Alloc allocator_type; 00100 00101 private: 00102 // concept requirements 00103 typedef typename _Alloc::value_type _Alloc_value_type; 00104 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00105 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00106 _BinaryFunctionConcept) 00107 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00108 00109 public: 00110 class value_compare 00111 : public std::binary_function<value_type, value_type, bool> 00112 { 00113 friend class multimap<_Key, _Tp, _Compare, _Alloc>; 00114 protected: 00115 _Compare comp; 00116 00117 value_compare(_Compare __c) 00118 : comp(__c) { } 00119 00120 public: 00121 bool operator()(const value_type& __x, const value_type& __y) const 00122 { return comp(__x.first, __y.first); } 00123 }; 00124 00125 private: 00126 /// @if maint This turns a red-black tree into a [multi]map. @endif 00127 typedef typename _Alloc::template rebind<value_type>::other 00128 _Pair_alloc_type; 00129 00130 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00131 key_compare, _Pair_alloc_type> _Rep_type; 00132 /// @if maint The actual tree structure. @endif 00133 _Rep_type _M_t; 00134 00135 public: 00136 // many of these are specified differently in ISO, but the following are 00137 // "functionally equivalent" 00138 typedef typename _Pair_alloc_type::pointer pointer; 00139 typedef typename _Pair_alloc_type::const_pointer const_pointer; 00140 typedef typename _Pair_alloc_type::reference reference; 00141 typedef typename _Pair_alloc_type::const_reference const_reference; 00142 typedef typename _Rep_type::iterator iterator; 00143 typedef typename _Rep_type::const_iterator const_iterator; 00144 typedef typename _Rep_type::size_type size_type; 00145 typedef typename _Rep_type::difference_type difference_type; 00146 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00147 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00148 00149 // [23.3.2] construct/copy/destroy 00150 // (get_allocator() is also listed in this section) 00151 /** 00152 * @brief Default constructor creates no elements. 00153 */ 00154 multimap() 00155 : _M_t(_Compare(), allocator_type()) { } 00156 00157 // for some reason this was made a separate function 00158 /** 00159 * @brief Default constructor creates no elements. 00160 */ 00161 explicit 00162 multimap(const _Compare& __comp, 00163 const allocator_type& __a = allocator_type()) 00164 : _M_t(__comp, __a) { } 00165 00166 /** 00167 * @brief %Multimap copy constructor. 00168 * @param x A %multimap of identical element and allocator types. 00169 * 00170 * The newly-created %multimap uses a copy of the allocation object used 00171 * by @a x. 00172 */ 00173 multimap(const multimap& __x) 00174 : _M_t(__x._M_t) { } 00175 00176 /** 00177 * @brief Builds a %multimap from a range. 00178 * @param first An input iterator. 00179 * @param last An input iterator. 00180 * 00181 * Create a %multimap consisting of copies of the elements from 00182 * [first,last). This is linear in N if the range is already sorted, 00183 * and NlogN otherwise (where N is distance(first,last)). 00184 */ 00185 template <typename _InputIterator> 00186 multimap(_InputIterator __first, _InputIterator __last) 00187 : _M_t(_Compare(), allocator_type()) 00188 { _M_t._M_insert_equal(__first, __last); } 00189 00190 /** 00191 * @brief Builds a %multimap from a range. 00192 * @param first An input iterator. 00193 * @param last An input iterator. 00194 * @param comp A comparison functor. 00195 * @param a An allocator object. 00196 * 00197 * Create a %multimap consisting of copies of the elements from 00198 * [first,last). This is linear in N if the range is already sorted, 00199 * and NlogN otherwise (where N is distance(first,last)). 00200 */ 00201 template <typename _InputIterator> 00202 multimap(_InputIterator __first, _InputIterator __last, 00203 const _Compare& __comp, 00204 const allocator_type& __a = allocator_type()) 00205 : _M_t(__comp, __a) 00206 { _M_t._M_insert_equal(__first, __last); } 00207 00208 // FIXME There is no dtor declared, but we should have something generated 00209 // by Doxygen. I don't know what tags to add to this paragraph to make 00210 // that happen: 00211 /** 00212 * The dtor only erases the elements, and note that if the elements 00213 * themselves are pointers, the pointed-to memory is not touched in any 00214 * way. Managing the pointer is the user's responsibilty. 00215 */ 00216 00217 /** 00218 * @brief %Multimap assignment operator. 00219 * @param x A %multimap of identical element and allocator types. 00220 * 00221 * All the elements of @a x are copied, but unlike the copy constructor, 00222 * the allocator object is not copied. 00223 */ 00224 multimap& 00225 operator=(const multimap& __x) 00226 { 00227 _M_t = __x._M_t; 00228 return *this; 00229 } 00230 00231 /// Get a copy of the memory allocation object. 00232 allocator_type 00233 get_allocator() const 00234 { return _M_t.get_allocator(); } 00235 00236 // iterators 00237 /** 00238 * Returns a read/write iterator that points to the first pair in the 00239 * %multimap. Iteration is done in ascending order according to the 00240 * keys. 00241 */ 00242 iterator 00243 begin() 00244 { return _M_t.begin(); } 00245 00246 /** 00247 * Returns a read-only (constant) iterator that points to the first pair 00248 * in the %multimap. Iteration is done in ascending order according to 00249 * the keys. 00250 */ 00251 const_iterator 00252 begin() const 00253 { return _M_t.begin(); } 00254 00255 /** 00256 * Returns a read/write iterator that points one past the last pair in 00257 * the %multimap. Iteration is done in ascending order according to the 00258 * keys. 00259 */ 00260 iterator 00261 end() 00262 { return _M_t.end(); } 00263 00264 /** 00265 * Returns a read-only (constant) iterator that points one past the last 00266 * pair in the %multimap. Iteration is done in ascending order according 00267 * to the keys. 00268 */ 00269 const_iterator 00270 end() const 00271 { return _M_t.end(); } 00272 00273 /** 00274 * Returns a read/write reverse iterator that points to the last pair in 00275 * the %multimap. Iteration is done in descending order according to the 00276 * keys. 00277 */ 00278 reverse_iterator 00279 rbegin() 00280 { return _M_t.rbegin(); } 00281 00282 /** 00283 * Returns a read-only (constant) reverse iterator that points to the 00284 * last pair in the %multimap. Iteration is done in descending order 00285 * according to the keys. 00286 */ 00287 const_reverse_iterator 00288 rbegin() const 00289 { return _M_t.rbegin(); } 00290 00291 /** 00292 * Returns a read/write reverse iterator that points to one before the 00293 * first pair in the %multimap. Iteration is done in descending order 00294 * according to the keys. 00295 */ 00296 reverse_iterator 00297 rend() 00298 { return _M_t.rend(); } 00299 00300 /** 00301 * Returns a read-only (constant) reverse iterator that points to one 00302 * before the first pair in the %multimap. Iteration is done in 00303 * descending order according to the keys. 00304 */ 00305 const_reverse_iterator 00306 rend() const 00307 { return _M_t.rend(); } 00308 00309 // capacity 00310 /** Returns true if the %multimap is empty. */ 00311 bool 00312 empty() const 00313 { return _M_t.empty(); } 00314 00315 /** Returns the size of the %multimap. */ 00316 size_type 00317 size() const 00318 { return _M_t.size(); } 00319 00320 /** Returns the maximum size of the %multimap. */ 00321 size_type 00322 max_size() const 00323 { return _M_t.max_size(); } 00324 00325 // modifiers 00326 /** 00327 * @brief Inserts a std::pair into the %multimap. 00328 * @param x Pair to be inserted (see std::make_pair for easy creation 00329 * of pairs). 00330 * @return An iterator that points to the inserted (key,value) pair. 00331 * 00332 * This function inserts a (key, value) pair into the %multimap. 00333 * Contrary to a std::map the %multimap does not rely on unique keys and 00334 * thus multiple pairs with the same key can be inserted. 00335 * 00336 * Insertion requires logarithmic time. 00337 */ 00338 iterator 00339 insert(const value_type& __x) 00340 { return _M_t._M_insert_equal(__x); } 00341 00342 /** 00343 * @brief Inserts a std::pair into the %multimap. 00344 * @param position An iterator that serves as a hint as to where the 00345 * pair should be inserted. 00346 * @param x Pair to be inserted (see std::make_pair for easy creation 00347 * of pairs). 00348 * @return An iterator that points to the inserted (key,value) pair. 00349 * 00350 * This function inserts a (key, value) pair into the %multimap. 00351 * Contrary to a std::map the %multimap does not rely on unique keys and 00352 * thus multiple pairs with the same key can be inserted. 00353 * Note that the first parameter is only a hint and can potentially 00354 * improve the performance of the insertion process. A bad hint would 00355 * cause no gains in efficiency. 00356 * 00357 * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4 00358 * for more on "hinting". 00359 * 00360 * Insertion requires logarithmic time (if the hint is not taken). 00361 */ 00362 iterator 00363 insert(iterator __position, const value_type& __x) 00364 { return _M_t._M_insert_equal(__position, __x); } 00365 00366 /** 00367 * @brief A template function that attemps to insert a range of elements. 00368 * @param first Iterator pointing to the start of the range to be 00369 * inserted. 00370 * @param last Iterator pointing to the end of the range. 00371 * 00372 * Complexity similar to that of the range constructor. 00373 */ 00374 template <typename _InputIterator> 00375 void 00376 insert(_InputIterator __first, _InputIterator __last) 00377 { _M_t._M_insert_equal(__first, __last); } 00378 00379 /** 00380 * @brief Erases an element from a %multimap. 00381 * @param position An iterator pointing to the element to be erased. 00382 * 00383 * This function erases an element, pointed to by the given iterator, 00384 * from a %multimap. Note that this function only erases the element, 00385 * and that if the element is itself a pointer, the pointed-to memory is 00386 * not touched in any way. Managing the pointer is the user's 00387 * responsibilty. 00388 */ 00389 void 00390 erase(iterator __position) 00391 { _M_t.erase(__position); } 00392 00393 /** 00394 * @brief Erases elements according to the provided key. 00395 * @param x Key of element to be erased. 00396 * @return The number of elements erased. 00397 * 00398 * This function erases all elements located by the given key from a 00399 * %multimap. 00400 * Note that this function only erases the element, and that if 00401 * the element is itself a pointer, the pointed-to memory is not touched 00402 * in any way. Managing the pointer is the user's responsibilty. 00403 */ 00404 size_type 00405 erase(const key_type& __x) 00406 { return _M_t.erase(__x); } 00407 00408 /** 00409 * @brief Erases a [first,last) range of elements from a %multimap. 00410 * @param first Iterator pointing to the start of the range to be 00411 * erased. 00412 * @param last Iterator pointing to the end of the range to be erased. 00413 * 00414 * This function erases a sequence of elements from a %multimap. 00415 * Note that this function only erases the elements, and that if 00416 * the elements themselves are pointers, the pointed-to memory is not 00417 * touched in any way. Managing the pointer is the user's responsibilty. 00418 */ 00419 void 00420 erase(iterator __first, iterator __last) 00421 { _M_t.erase(__first, __last); } 00422 00423 /** 00424 * @brief Swaps data with another %multimap. 00425 * @param x A %multimap of the same element and allocator types. 00426 * 00427 * This exchanges the elements between two multimaps in constant time. 00428 * (It is only swapping a pointer, an integer, and an instance of 00429 * the @c Compare type (which itself is often stateless and empty), so it 00430 * should be quite fast.) 00431 * Note that the global std::swap() function is specialized such that 00432 * std::swap(m1,m2) will feed to this function. 00433 */ 00434 void 00435 swap(multimap& __x) 00436 { _M_t.swap(__x._M_t); } 00437 00438 /** 00439 * Erases all elements in a %multimap. Note that this function only 00440 * erases the elements, and that if the elements themselves are pointers, 00441 * the pointed-to memory is not touched in any way. Managing the pointer 00442 * is the user's responsibilty. 00443 */ 00444 void 00445 clear() 00446 { _M_t.clear(); } 00447 00448 // observers 00449 /** 00450 * Returns the key comparison object out of which the %multimap 00451 * was constructed. 00452 */ 00453 key_compare 00454 key_comp() const 00455 { return _M_t.key_comp(); } 00456 00457 /** 00458 * Returns a value comparison object, built from the key comparison 00459 * object out of which the %multimap was constructed. 00460 */ 00461 value_compare 00462 value_comp() const 00463 { return value_compare(_M_t.key_comp()); } 00464 00465 // multimap operations 00466 /** 00467 * @brief Tries to locate an element in a %multimap. 00468 * @param x Key of (key, value) pair to be located. 00469 * @return Iterator pointing to sought-after element, 00470 * or end() if not found. 00471 * 00472 * This function takes a key and tries to locate the element with which 00473 * the key matches. If successful the function returns an iterator 00474 * pointing to the sought after %pair. If unsuccessful it returns the 00475 * past-the-end ( @c end() ) iterator. 00476 */ 00477 iterator 00478 find(const key_type& __x) 00479 { return _M_t.find(__x); } 00480 00481 /** 00482 * @brief Tries to locate an element in a %multimap. 00483 * @param x Key of (key, value) pair to be located. 00484 * @return Read-only (constant) iterator pointing to sought-after 00485 * element, or end() if not found. 00486 * 00487 * This function takes a key and tries to locate the element with which 00488 * the key matches. If successful the function returns a constant 00489 * iterator pointing to the sought after %pair. If unsuccessful it 00490 * returns the past-the-end ( @c end() ) iterator. 00491 */ 00492 const_iterator 00493 find(const key_type& __x) const 00494 { return _M_t.find(__x); } 00495 00496 /** 00497 * @brief Finds the number of elements with given key. 00498 * @param x Key of (key, value) pairs to be located. 00499 * @return Number of elements with specified key. 00500 */ 00501 size_type 00502 count(const key_type& __x) const 00503 { return _M_t.count(__x); } 00504 00505 /** 00506 * @brief Finds the beginning of a subsequence matching given key. 00507 * @param x Key of (key, value) pair to be located. 00508 * @return Iterator pointing to first element equal to or greater 00509 * than key, or end(). 00510 * 00511 * This function returns the first element of a subsequence of elements 00512 * that matches the given key. If unsuccessful it returns an iterator 00513 * pointing to the first element that has a greater value than given key 00514 * or end() if no such element exists. 00515 */ 00516 iterator 00517 lower_bound(const key_type& __x) 00518 { return _M_t.lower_bound(__x); } 00519 00520 /** 00521 * @brief Finds the beginning of a subsequence matching given key. 00522 * @param x Key of (key, value) pair to be located. 00523 * @return Read-only (constant) iterator pointing to first element 00524 * equal to or greater than key, or end(). 00525 * 00526 * This function returns the first element of a subsequence of elements 00527 * that matches the given key. If unsuccessful the iterator will point 00528 * to the next greatest element or, if no such greater element exists, to 00529 * end(). 00530 */ 00531 const_iterator 00532 lower_bound(const key_type& __x) const 00533 { return _M_t.lower_bound(__x); } 00534 00535 /** 00536 * @brief Finds the end of a subsequence matching given key. 00537 * @param x Key of (key, value) pair to be located. 00538 * @return Iterator pointing to the first element 00539 * greater than key, or end(). 00540 */ 00541 iterator 00542 upper_bound(const key_type& __x) 00543 { return _M_t.upper_bound(__x); } 00544 00545 /** 00546 * @brief Finds the end of a subsequence matching given key. 00547 * @param x Key of (key, value) pair to be located. 00548 * @return Read-only (constant) iterator pointing to first iterator 00549 * greater than key, or end(). 00550 */ 00551 const_iterator 00552 upper_bound(const key_type& __x) const 00553 { return _M_t.upper_bound(__x); } 00554 00555 /** 00556 * @brief Finds a subsequence matching given key. 00557 * @param x Key of (key, value) pairs to be located. 00558 * @return Pair of iterators that possibly points to the subsequence 00559 * matching given key. 00560 * 00561 * This function is equivalent to 00562 * @code 00563 * std::make_pair(c.lower_bound(val), 00564 * c.upper_bound(val)) 00565 * @endcode 00566 * (but is faster than making the calls separately). 00567 */ 00568 std::pair<iterator, iterator> 00569 equal_range(const key_type& __x) 00570 { return _M_t.equal_range(__x); } 00571 00572 /** 00573 * @brief Finds a subsequence matching given key. 00574 * @param x Key of (key, value) pairs to be located. 00575 * @return Pair of read-only (constant) iterators that possibly points 00576 * to the subsequence matching given key. 00577 * 00578 * This function is equivalent to 00579 * @code 00580 * std::make_pair(c.lower_bound(val), 00581 * c.upper_bound(val)) 00582 * @endcode 00583 * (but is faster than making the calls separately). 00584 */ 00585 std::pair<const_iterator, const_iterator> 00586 equal_range(const key_type& __x) const 00587 { return _M_t.equal_range(__x); } 00588 00589 template <typename _K1, typename _T1, typename _C1, typename _A1> 00590 friend bool 00591 operator== (const multimap<_K1, _T1, _C1, _A1>&, 00592 const multimap<_K1, _T1, _C1, _A1>&); 00593 00594 template <typename _K1, typename _T1, typename _C1, typename _A1> 00595 friend bool 00596 operator< (const multimap<_K1, _T1, _C1, _A1>&, 00597 const multimap<_K1, _T1, _C1, _A1>&); 00598 }; 00599 00600 /** 00601 * @brief Multimap equality comparison. 00602 * @param x A %multimap. 00603 * @param y A %multimap of the same type as @a x. 00604 * @return True iff the size and elements of the maps are equal. 00605 * 00606 * This is an equivalence relation. It is linear in the size of the 00607 * multimaps. Multimaps are considered equivalent if their sizes are equal, 00608 * and if corresponding elements compare equal. 00609 */ 00610 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00611 inline bool 00612 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00613 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00614 { return __x._M_t == __y._M_t; } 00615 00616 /** 00617 * @brief Multimap ordering relation. 00618 * @param x A %multimap. 00619 * @param y A %multimap of the same type as @a x. 00620 * @return True iff @a x is lexicographically less than @a y. 00621 * 00622 * This is a total ordering relation. It is linear in the size of the 00623 * multimaps. The elements must be comparable with @c <. 00624 * 00625 * See std::lexicographical_compare() for how the determination is made. 00626 */ 00627 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00628 inline bool 00629 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00630 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00631 { return __x._M_t < __y._M_t; } 00632 00633 /// Based on operator== 00634 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00635 inline bool 00636 operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00637 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00638 { return !(__x == __y); } 00639 00640 /// Based on operator< 00641 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00642 inline bool 00643 operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00644 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00645 { return __y < __x; } 00646 00647 /// Based on operator< 00648 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00649 inline bool 00650 operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00651 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00652 { return !(__y < __x); } 00653 00654 /// Based on operator< 00655 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00656 inline bool 00657 operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00658 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00659 { return !(__x < __y); } 00660 00661 /// See std::multimap::swap(). 00662 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00663 inline void 00664 swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00665 multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00666 { __x.swap(__y); } 00667 00668 _GLIBCXX_END_NESTED_NAMESPACE 00669 00670 #endif /* _MULTIMAP_H */