00001 // Map implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007 00004 // Free Software Foundation, Inc. 00005 // 00006 // This file is part of the GNU ISO C++ Library. This library is free 00007 // software; you can redistribute it and/or modify it under the 00008 // terms of the GNU General Public License as published by the 00009 // Free Software Foundation; either version 2, or (at your option) 00010 // any later version. 00011 00012 // This library is distributed in the hope that it will be useful, 00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 // GNU General Public License for more details. 00016 00017 // You should have received a copy of the GNU General Public License along 00018 // with this library; see the file COPYING. If not, write to the Free 00019 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 00020 // USA. 00021 00022 // As a special exception, you may use this file as part of a free software 00023 // library without restriction. Specifically, if other files instantiate 00024 // templates or use macros or inline functions from this file, or you compile 00025 // this file and link it with other files to produce an executable, this 00026 // file does not by itself cause the resulting executable to be covered by 00027 // the GNU General Public License. This exception does not however 00028 // invalidate any other reasons why the executable file might be covered by 00029 // the GNU General Public License. 00030 00031 /* 00032 * 00033 * Copyright (c) 1994 00034 * Hewlett-Packard Company 00035 * 00036 * Permission to use, copy, modify, distribute and sell this software 00037 * and its documentation for any purpose is hereby granted without fee, 00038 * provided that the above copyright notice appear in all copies and 00039 * that both that copyright notice and this permission notice appear 00040 * in supporting documentation. Hewlett-Packard Company makes no 00041 * representations about the suitability of this software for any 00042 * purpose. It is provided "as is" without express or implied warranty. 00043 * 00044 * 00045 * Copyright (c) 1996,1997 00046 * Silicon Graphics Computer Systems, Inc. 00047 * 00048 * Permission to use, copy, modify, distribute and sell this software 00049 * and its documentation for any purpose is hereby granted without fee, 00050 * provided that the above copyright notice appear in all copies and 00051 * that both that copyright notice and this permission notice appear 00052 * in supporting documentation. Silicon Graphics makes no 00053 * representations about the suitability of this software for any 00054 * purpose. It is provided "as is" without express or implied warranty. 00055 */ 00056 00057 /** @file stl_map.h 00058 * This is an internal header file, included by other library headers. 00059 * You should not attempt to use it directly. 00060 */ 00061 00062 #ifndef _MAP_H 00063 #define _MAP_H 1 00064 00065 #include <bits/functexcept.h> 00066 #include <bits/concept_check.h> 00067 00068 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD) 00069 00070 /** 00071 * @brief A standard container made up of (key,value) pairs, which can be 00072 * retrieved based on a key, in logarithmic time. 00073 * 00074 * @ingroup Containers 00075 * @ingroup Assoc_containers 00076 * 00077 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00078 * <a href="tables.html#66">reversible container</a>, and an 00079 * <a href="tables.html#69">associative container</a> (using unique keys). 00080 * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the 00081 * value_type is std::pair<const Key,T>. 00082 * 00083 * Maps support bidirectional iterators. 00084 * 00085 * @if maint 00086 * The private tree data is declared exactly the same way for map and 00087 * multimap; the distinction is made entirely in how the tree functions are 00088 * called (*_unique versus *_equal, same as the standard). 00089 * @endif 00090 */ 00091 template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>, 00092 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00093 class map 00094 { 00095 public: 00096 typedef _Key key_type; 00097 typedef _Tp mapped_type; 00098 typedef std::pair<const _Key, _Tp> value_type; 00099 typedef _Compare key_compare; 00100 typedef _Alloc allocator_type; 00101 00102 private: 00103 // concept requirements 00104 typedef typename _Alloc::value_type _Alloc_value_type; 00105 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00106 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00107 _BinaryFunctionConcept) 00108 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00109 00110 public: 00111 class value_compare 00112 : public std::binary_function<value_type, value_type, bool> 00113 { 00114 friend class map<_Key, _Tp, _Compare, _Alloc>; 00115 protected: 00116 _Compare comp; 00117 00118 value_compare(_Compare __c) 00119 : comp(__c) { } 00120 00121 public: 00122 bool operator()(const value_type& __x, const value_type& __y) const 00123 { return comp(__x.first, __y.first); } 00124 }; 00125 00126 private: 00127 /// @if maint This turns a red-black tree into a [multi]map. @endif 00128 typedef typename _Alloc::template rebind<value_type>::other 00129 _Pair_alloc_type; 00130 00131 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00132 key_compare, _Pair_alloc_type> _Rep_type; 00133 00134 /// @if maint The actual tree structure. @endif 00135 _Rep_type _M_t; 00136 00137 public: 00138 // many of these are specified differently in ISO, but the following are 00139 // "functionally equivalent" 00140 typedef typename _Pair_alloc_type::pointer pointer; 00141 typedef typename _Pair_alloc_type::const_pointer const_pointer; 00142 typedef typename _Pair_alloc_type::reference reference; 00143 typedef typename _Pair_alloc_type::const_reference const_reference; 00144 typedef typename _Rep_type::iterator iterator; 00145 typedef typename _Rep_type::const_iterator const_iterator; 00146 typedef typename _Rep_type::size_type size_type; 00147 typedef typename _Rep_type::difference_type difference_type; 00148 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00149 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00150 00151 // [23.3.1.1] construct/copy/destroy 00152 // (get_allocator() is normally listed in this section, but seems to have 00153 // been accidentally omitted in the printed standard) 00154 /** 00155 * @brief Default constructor creates no elements. 00156 */ 00157 map() 00158 : _M_t(_Compare(), allocator_type()) { } 00159 00160 // for some reason this was made a separate function 00161 /** 00162 * @brief Default constructor creates no elements. 00163 */ 00164 explicit 00165 map(const _Compare& __comp, const allocator_type& __a = allocator_type()) 00166 : _M_t(__comp, __a) { } 00167 00168 /** 00169 * @brief Map copy constructor. 00170 * @param x A %map of identical element and allocator types. 00171 * 00172 * The newly-created %map uses a copy of the allocation object used 00173 * by @a x. 00174 */ 00175 map(const map& __x) 00176 : _M_t(__x._M_t) { } 00177 00178 /** 00179 * @brief Builds a %map from a range. 00180 * @param first An input iterator. 00181 * @param last An input iterator. 00182 * 00183 * Create a %map consisting of copies of the elements from [first,last). 00184 * This is linear in N if the range is already sorted, and NlogN 00185 * otherwise (where N is distance(first,last)). 00186 */ 00187 template <typename _InputIterator> 00188 map(_InputIterator __first, _InputIterator __last) 00189 : _M_t(_Compare(), allocator_type()) 00190 { _M_t._M_insert_unique(__first, __last); } 00191 00192 /** 00193 * @brief Builds a %map from a range. 00194 * @param first An input iterator. 00195 * @param last An input iterator. 00196 * @param comp A comparison functor. 00197 * @param a An allocator object. 00198 * 00199 * Create a %map consisting of copies of the elements from [first,last). 00200 * This is linear in N if the range is already sorted, and NlogN 00201 * otherwise (where N is distance(first,last)). 00202 */ 00203 template <typename _InputIterator> 00204 map(_InputIterator __first, _InputIterator __last, 00205 const _Compare& __comp, const allocator_type& __a = allocator_type()) 00206 : _M_t(__comp, __a) 00207 { _M_t._M_insert_unique(__first, __last); } 00208 00209 // FIXME There is no dtor declared, but we should have something 00210 // generated by Doxygen. I don't know what tags to add to this 00211 // paragraph to make that happen: 00212 /** 00213 * The dtor only erases the elements, and note that if the elements 00214 * themselves are pointers, the pointed-to memory is not touched in any 00215 * way. Managing the pointer is the user's responsibilty. 00216 */ 00217 00218 /** 00219 * @brief Map assignment operator. 00220 * @param x A %map of identical element and allocator types. 00221 * 00222 * All the elements of @a x are copied, but unlike the copy constructor, 00223 * the allocator object is not copied. 00224 */ 00225 map& 00226 operator=(const map& __x) 00227 { 00228 _M_t = __x._M_t; 00229 return *this; 00230 } 00231 00232 /// Get a copy of the memory allocation object. 00233 allocator_type 00234 get_allocator() const 00235 { return _M_t.get_allocator(); } 00236 00237 // iterators 00238 /** 00239 * Returns a read/write iterator that points to the first pair in the 00240 * %map. 00241 * Iteration is done in ascending order according to the keys. 00242 */ 00243 iterator 00244 begin() 00245 { return _M_t.begin(); } 00246 00247 /** 00248 * Returns a read-only (constant) iterator that points to the first pair 00249 * in the %map. Iteration is done in ascending order according to the 00250 * keys. 00251 */ 00252 const_iterator 00253 begin() const 00254 { return _M_t.begin(); } 00255 00256 /** 00257 * Returns a read/write iterator that points one past the last 00258 * pair in the %map. Iteration is done in ascending order 00259 * according to the keys. 00260 */ 00261 iterator 00262 end() 00263 { return _M_t.end(); } 00264 00265 /** 00266 * Returns a read-only (constant) iterator that points one past the last 00267 * pair in the %map. Iteration is done in ascending order according to 00268 * the keys. 00269 */ 00270 const_iterator 00271 end() const 00272 { return _M_t.end(); } 00273 00274 /** 00275 * Returns a read/write reverse iterator that points to the last pair in 00276 * the %map. Iteration is done in descending order according to the 00277 * keys. 00278 */ 00279 reverse_iterator 00280 rbegin() 00281 { return _M_t.rbegin(); } 00282 00283 /** 00284 * Returns a read-only (constant) reverse iterator that points to the 00285 * last pair in the %map. Iteration is done in descending order 00286 * according to the keys. 00287 */ 00288 const_reverse_iterator 00289 rbegin() const 00290 { return _M_t.rbegin(); } 00291 00292 /** 00293 * Returns a read/write reverse iterator that points to one before the 00294 * first pair in the %map. Iteration is done in descending order 00295 * according to the keys. 00296 */ 00297 reverse_iterator 00298 rend() 00299 { return _M_t.rend(); } 00300 00301 /** 00302 * Returns a read-only (constant) reverse iterator that points to one 00303 * before the first pair in the %map. Iteration is done in descending 00304 * order according to the keys. 00305 */ 00306 const_reverse_iterator 00307 rend() const 00308 { return _M_t.rend(); } 00309 00310 // capacity 00311 /** Returns true if the %map is empty. (Thus begin() would equal 00312 * end().) 00313 */ 00314 bool 00315 empty() const 00316 { return _M_t.empty(); } 00317 00318 /** Returns the size of the %map. */ 00319 size_type 00320 size() const 00321 { return _M_t.size(); } 00322 00323 /** Returns the maximum size of the %map. */ 00324 size_type 00325 max_size() const 00326 { return _M_t.max_size(); } 00327 00328 // [23.3.1.2] element access 00329 /** 00330 * @brief Subscript ( @c [] ) access to %map data. 00331 * @param k The key for which data should be retrieved. 00332 * @return A reference to the data of the (key,data) %pair. 00333 * 00334 * Allows for easy lookup with the subscript ( @c [] ) 00335 * operator. Returns data associated with the key specified in 00336 * subscript. If the key does not exist, a pair with that key 00337 * is created using default values, which is then returned. 00338 * 00339 * Lookup requires logarithmic time. 00340 */ 00341 mapped_type& 00342 operator[](const key_type& __k) 00343 { 00344 // concept requirements 00345 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>) 00346 00347 iterator __i = lower_bound(__k); 00348 // __i->first is greater than or equivalent to __k. 00349 if (__i == end() || key_comp()(__k, (*__i).first)) 00350 __i = insert(__i, value_type(__k, mapped_type())); 00351 return (*__i).second; 00352 } 00353 00354 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00355 // DR 464. Suggestion for new member functions in standard containers. 00356 /** 00357 * @brief Access to %map data. 00358 * @param k The key for which data should be retrieved. 00359 * @return A reference to the data whose key is equivalent to @a k, if 00360 * such a data is present in the %map. 00361 * @throw std::out_of_range If no such data is present. 00362 */ 00363 mapped_type& 00364 at(const key_type& __k) 00365 { 00366 iterator __i = lower_bound(__k); 00367 if (__i == end() || key_comp()(__k, (*__i).first)) 00368 __throw_out_of_range(__N("map::at")); 00369 return (*__i).second; 00370 } 00371 00372 const mapped_type& 00373 at(const key_type& __k) const 00374 { 00375 const_iterator __i = lower_bound(__k); 00376 if (__i == end() || key_comp()(__k, (*__i).first)) 00377 __throw_out_of_range(__N("map::at")); 00378 return (*__i).second; 00379 } 00380 00381 // modifiers 00382 /** 00383 * @brief Attempts to insert a std::pair into the %map. 00384 00385 * @param x Pair to be inserted (see std::make_pair for easy creation 00386 * of pairs). 00387 00388 * @return A pair, of which the first element is an iterator that 00389 * points to the possibly inserted pair, and the second is 00390 * a bool that is true if the pair was actually inserted. 00391 * 00392 * This function attempts to insert a (key, value) %pair into the %map. 00393 * A %map relies on unique keys and thus a %pair is only inserted if its 00394 * first element (the key) is not already present in the %map. 00395 * 00396 * Insertion requires logarithmic time. 00397 */ 00398 std::pair<iterator, bool> 00399 insert(const value_type& __x) 00400 { return _M_t._M_insert_unique(__x); } 00401 00402 /** 00403 * @brief Attempts to insert a std::pair into the %map. 00404 * @param position An iterator that serves as a hint as to where the 00405 * pair should be inserted. 00406 * @param x Pair to be inserted (see std::make_pair for easy creation 00407 * of pairs). 00408 * @return An iterator that points to the element with key of @a x (may 00409 * or may not be the %pair passed in). 00410 * 00411 00412 * This function is not concerned about whether the insertion 00413 * took place, and thus does not return a boolean like the 00414 * single-argument insert() does. Note that the first 00415 * parameter is only a hint and can potentially improve the 00416 * performance of the insertion process. A bad hint would 00417 * cause no gains in efficiency. 00418 * 00419 * See 00420 * http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4 00421 * for more on "hinting". 00422 * 00423 * Insertion requires logarithmic time (if the hint is not taken). 00424 */ 00425 iterator 00426 insert(iterator __position, const value_type& __x) 00427 { return _M_t._M_insert_unique(__position, __x); } 00428 00429 /** 00430 * @brief Template function that attemps to insert a range of elements. 00431 * @param first Iterator pointing to the start of the range to be 00432 * inserted. 00433 * @param last Iterator pointing to the end of the range. 00434 * 00435 * Complexity similar to that of the range constructor. 00436 */ 00437 template <typename _InputIterator> 00438 void 00439 insert(_InputIterator __first, _InputIterator __last) 00440 { _M_t._M_insert_unique(__first, __last); } 00441 00442 /** 00443 * @brief Erases an element from a %map. 00444 * @param position An iterator pointing to the element to be erased. 00445 * 00446 * This function erases an element, pointed to by the given 00447 * iterator, from a %map. Note that this function only erases 00448 * the element, and that if the element is itself a pointer, 00449 * the pointed-to memory is not touched in any way. Managing 00450 * the pointer is the user's responsibilty. 00451 */ 00452 void 00453 erase(iterator __position) 00454 { _M_t.erase(__position); } 00455 00456 /** 00457 * @brief Erases elements according to the provided key. 00458 * @param x Key of element to be erased. 00459 * @return The number of elements erased. 00460 * 00461 * This function erases all the elements located by the given key from 00462 * a %map. 00463 * Note that this function only erases the element, and that if 00464 * the element is itself a pointer, the pointed-to memory is not touched 00465 * in any way. Managing the pointer is the user's responsibilty. 00466 */ 00467 size_type 00468 erase(const key_type& __x) 00469 { return _M_t.erase(__x); } 00470 00471 /** 00472 * @brief Erases a [first,last) range of elements from a %map. 00473 * @param first Iterator pointing to the start of the range to be 00474 * erased. 00475 * @param last Iterator pointing to the end of the range to be erased. 00476 * 00477 * This function erases a sequence of elements from a %map. 00478 * Note that this function only erases the element, and that if 00479 * the element is itself a pointer, the pointed-to memory is not touched 00480 * in any way. Managing the pointer is the user's responsibilty. 00481 */ 00482 void 00483 erase(iterator __first, iterator __last) 00484 { _M_t.erase(__first, __last); } 00485 00486 /** 00487 * @brief Swaps data with another %map. 00488 * @param x A %map of the same element and allocator types. 00489 * 00490 * This exchanges the elements between two maps in constant 00491 * time. (It is only swapping a pointer, an integer, and an 00492 * instance of the @c Compare type (which itself is often 00493 * stateless and empty), so it should be quite fast.) Note 00494 * that the global std::swap() function is specialized such 00495 * that std::swap(m1,m2) will feed to this function. 00496 */ 00497 void 00498 swap(map& __x) 00499 { _M_t.swap(__x._M_t); } 00500 00501 /** 00502 * Erases all elements in a %map. Note that this function only 00503 * erases the elements, and that if the elements themselves are 00504 * pointers, the pointed-to memory is not touched in any way. 00505 * Managing the pointer is the user's responsibilty. 00506 */ 00507 void 00508 clear() 00509 { _M_t.clear(); } 00510 00511 // observers 00512 /** 00513 * Returns the key comparison object out of which the %map was 00514 * constructed. 00515 */ 00516 key_compare 00517 key_comp() const 00518 { return _M_t.key_comp(); } 00519 00520 /** 00521 * Returns a value comparison object, built from the key comparison 00522 * object out of which the %map was constructed. 00523 */ 00524 value_compare 00525 value_comp() const 00526 { return value_compare(_M_t.key_comp()); } 00527 00528 // [23.3.1.3] map operations 00529 /** 00530 * @brief Tries to locate an element in a %map. 00531 * @param x Key of (key, value) %pair to be located. 00532 * @return Iterator pointing to sought-after element, or end() if not 00533 * found. 00534 * 00535 * This function takes a key and tries to locate the element with which 00536 * the key matches. If successful the function returns an iterator 00537 * pointing to the sought after %pair. If unsuccessful it returns the 00538 * past-the-end ( @c end() ) iterator. 00539 */ 00540 iterator 00541 find(const key_type& __x) 00542 { return _M_t.find(__x); } 00543 00544 /** 00545 * @brief Tries to locate an element in a %map. 00546 * @param x Key of (key, value) %pair to be located. 00547 * @return Read-only (constant) iterator pointing to sought-after 00548 * element, or end() if not found. 00549 * 00550 * This function takes a key and tries to locate the element with which 00551 * the key matches. If successful the function returns a constant 00552 * iterator pointing to the sought after %pair. If unsuccessful it 00553 * returns the past-the-end ( @c end() ) iterator. 00554 */ 00555 const_iterator 00556 find(const key_type& __x) const 00557 { return _M_t.find(__x); } 00558 00559 /** 00560 * @brief Finds the number of elements with given key. 00561 * @param x Key of (key, value) pairs to be located. 00562 * @return Number of elements with specified key. 00563 * 00564 * This function only makes sense for multimaps; for map the result will 00565 * either be 0 (not present) or 1 (present). 00566 */ 00567 size_type 00568 count(const key_type& __x) const 00569 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } 00570 00571 /** 00572 * @brief Finds the beginning of a subsequence matching given key. 00573 * @param x Key of (key, value) pair to be located. 00574 * @return Iterator pointing to first element equal to or greater 00575 * than key, or end(). 00576 * 00577 * This function returns the first element of a subsequence of elements 00578 * that matches the given key. If unsuccessful it returns an iterator 00579 * pointing to the first element that has a greater value than given key 00580 * or end() if no such element exists. 00581 */ 00582 iterator 00583 lower_bound(const key_type& __x) 00584 { return _M_t.lower_bound(__x); } 00585 00586 /** 00587 * @brief Finds the beginning of a subsequence matching given key. 00588 * @param x Key of (key, value) pair to be located. 00589 * @return Read-only (constant) iterator pointing to first element 00590 * equal to or greater than key, or end(). 00591 * 00592 * This function returns the first element of a subsequence of elements 00593 * that matches the given key. If unsuccessful it returns an iterator 00594 * pointing to the first element that has a greater value than given key 00595 * or end() if no such element exists. 00596 */ 00597 const_iterator 00598 lower_bound(const key_type& __x) const 00599 { return _M_t.lower_bound(__x); } 00600 00601 /** 00602 * @brief Finds the end of a subsequence matching given key. 00603 * @param x Key of (key, value) pair to be located. 00604 * @return Iterator pointing to the first element 00605 * greater than key, or end(). 00606 */ 00607 iterator 00608 upper_bound(const key_type& __x) 00609 { return _M_t.upper_bound(__x); } 00610 00611 /** 00612 * @brief Finds the end of a subsequence matching given key. 00613 * @param x Key of (key, value) pair to be located. 00614 * @return Read-only (constant) iterator pointing to first iterator 00615 * greater than key, or end(). 00616 */ 00617 const_iterator 00618 upper_bound(const key_type& __x) const 00619 { return _M_t.upper_bound(__x); } 00620 00621 /** 00622 * @brief Finds a subsequence matching given key. 00623 * @param x Key of (key, value) pairs to be located. 00624 * @return Pair of iterators that possibly points to the subsequence 00625 * matching given key. 00626 * 00627 * This function is equivalent to 00628 * @code 00629 * std::make_pair(c.lower_bound(val), 00630 * c.upper_bound(val)) 00631 * @endcode 00632 * (but is faster than making the calls separately). 00633 * 00634 * This function probably only makes sense for multimaps. 00635 */ 00636 std::pair<iterator, iterator> 00637 equal_range(const key_type& __x) 00638 { return _M_t.equal_range(__x); } 00639 00640 /** 00641 * @brief Finds a subsequence matching given key. 00642 * @param x Key of (key, value) pairs to be located. 00643 * @return Pair of read-only (constant) iterators that possibly points 00644 * to the subsequence matching given key. 00645 * 00646 * This function is equivalent to 00647 * @code 00648 * std::make_pair(c.lower_bound(val), 00649 * c.upper_bound(val)) 00650 * @endcode 00651 * (but is faster than making the calls separately). 00652 * 00653 * This function probably only makes sense for multimaps. 00654 */ 00655 std::pair<const_iterator, const_iterator> 00656 equal_range(const key_type& __x) const 00657 { return _M_t.equal_range(__x); } 00658 00659 template <typename _K1, typename _T1, typename _C1, typename _A1> 00660 friend bool 00661 operator== (const map<_K1, _T1, _C1, _A1>&, 00662 const map<_K1, _T1, _C1, _A1>&); 00663 00664 template <typename _K1, typename _T1, typename _C1, typename _A1> 00665 friend bool 00666 operator< (const map<_K1, _T1, _C1, _A1>&, 00667 const map<_K1, _T1, _C1, _A1>&); 00668 }; 00669 00670 /** 00671 * @brief Map equality comparison. 00672 * @param x A %map. 00673 * @param y A %map of the same type as @a x. 00674 * @return True iff the size and elements of the maps are equal. 00675 * 00676 * This is an equivalence relation. It is linear in the size of the 00677 * maps. Maps are considered equivalent if their sizes are equal, 00678 * and if corresponding elements compare equal. 00679 */ 00680 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00681 inline bool 00682 operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00683 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00684 { return __x._M_t == __y._M_t; } 00685 00686 /** 00687 * @brief Map ordering relation. 00688 * @param x A %map. 00689 * @param y A %map of the same type as @a x. 00690 * @return True iff @a x is lexicographically less than @a y. 00691 * 00692 * This is a total ordering relation. It is linear in the size of the 00693 * maps. The elements must be comparable with @c <. 00694 * 00695 * See std::lexicographical_compare() for how the determination is made. 00696 */ 00697 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00698 inline bool 00699 operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00700 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00701 { return __x._M_t < __y._M_t; } 00702 00703 /// Based on operator== 00704 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00705 inline bool 00706 operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00707 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00708 { return !(__x == __y); } 00709 00710 /// Based on operator< 00711 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00712 inline bool 00713 operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00714 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00715 { return __y < __x; } 00716 00717 /// Based on operator< 00718 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00719 inline bool 00720 operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00721 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00722 { return !(__y < __x); } 00723 00724 /// Based on operator< 00725 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00726 inline bool 00727 operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00728 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00729 { return !(__x < __y); } 00730 00731 /// See std::map::swap(). 00732 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00733 inline void 00734 swap(map<_Key, _Tp, _Compare, _Alloc>& __x, 00735 map<_Key, _Tp, _Compare, _Alloc>& __y) 00736 { __x.swap(__y); } 00737 00738 _GLIBCXX_END_NESTED_NAMESPACE 00739 00740 #endif /* _MAP_H */