bitmap_allocator.h

Go to the documentation of this file.
00001 // Bitmap Allocator. -*- C++ -*-
00002 
00003 // Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 2, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // You should have received a copy of the GNU General Public License along
00017 // with this library; see the file COPYING.  If not, write to the Free
00018 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
00019 // USA.
00020 
00021 // As a special exception, you may use this file as part of a free software
00022 // library without restriction.  Specifically, if other files instantiate
00023 // templates or use macros or inline functions from this file, or you compile
00024 // this file and link it with other files to produce an executable, this
00025 // file does not by itself cause the resulting executable to be covered by
00026 // the GNU General Public License.  This exception does not however
00027 // invalidate any other reasons why the executable file might be covered by
00028 // the GNU General Public License.
00029 
00030 /** @file ext/bitmap_allocator.h
00031  *  This file is a GNU extension to the Standard C++ Library.
00032  */
00033 
00034 #ifndef _BITMAP_ALLOCATOR_H
00035 #define _BITMAP_ALLOCATOR_H 1
00036 
00037 #include <cstddef> // For std::size_t, and ptrdiff_t.
00038 #include <bits/functexcept.h> // For __throw_bad_alloc().
00039 #include <utility> // For std::pair.
00040 #include <functional> // For greater_equal, and less_equal.
00041 #include <new> // For operator new.
00042 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
00043 #include <ext/concurrence.h>
00044 
00045 
00046 /** @brief The constant in the expression below is the alignment
00047  * required in bytes.
00048  */
00049 #define _BALLOC_ALIGN_BYTES 8
00050 
00051 _GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
00052 
00053   using std::size_t;
00054   using std::ptrdiff_t;
00055 
00056   namespace __detail
00057   {
00058     /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
00059      *
00060      *  @brief  __mini_vector<> is a stripped down version of the
00061      *  full-fledged std::vector<>.
00062      *
00063      *  It is to be used only for built-in types or PODs. Notable
00064      *  differences are:
00065      * 
00066      *  @detail
00067      *  1. Not all accessor functions are present.
00068      *  2. Used ONLY for PODs.
00069      *  3. No Allocator template argument. Uses ::operator new() to get
00070      *  memory, and ::operator delete() to free it.
00071      *  Caveat: The dtor does NOT free the memory allocated, so this a
00072      *  memory-leaking vector!
00073      */
00074     template<typename _Tp>
00075       class __mini_vector
00076       {
00077     __mini_vector(const __mini_vector&);
00078     __mini_vector& operator=(const __mini_vector&);
00079 
00080       public:
00081     typedef _Tp value_type;
00082     typedef _Tp* pointer;
00083     typedef _Tp& reference;
00084     typedef const _Tp& const_reference;
00085     typedef size_t size_type;
00086     typedef ptrdiff_t difference_type;
00087     typedef pointer iterator;
00088 
00089       private:
00090     pointer _M_start;
00091     pointer _M_finish;
00092     pointer _M_end_of_storage;
00093 
00094     size_type
00095     _M_space_left() const throw()
00096     { return _M_end_of_storage - _M_finish; }
00097 
00098     pointer
00099     allocate(size_type __n)
00100     { return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
00101 
00102     void
00103     deallocate(pointer __p, size_type)
00104     { ::operator delete(__p); }
00105 
00106       public:
00107     // Members used: size(), push_back(), pop_back(),
00108     // insert(iterator, const_reference), erase(iterator),
00109     // begin(), end(), back(), operator[].
00110 
00111     __mini_vector() : _M_start(0), _M_finish(0), 
00112               _M_end_of_storage(0)
00113     { }
00114 
00115 #if 0
00116     ~__mini_vector()
00117     {
00118       if (this->_M_start)
00119         {
00120           this->deallocate(this->_M_start, this->_M_end_of_storage 
00121                    - this->_M_start);
00122         }
00123     }
00124 #endif
00125 
00126     size_type
00127     size() const throw()
00128     { return _M_finish - _M_start; }
00129 
00130     iterator
00131     begin() const throw()
00132     { return this->_M_start; }
00133 
00134     iterator
00135     end() const throw()
00136     { return this->_M_finish; }
00137 
00138     reference
00139     back() const throw()
00140     { return *(this->end() - 1); }
00141 
00142     reference
00143     operator[](const size_type __pos) const throw()
00144     { return this->_M_start[__pos]; }
00145 
00146     void
00147     insert(iterator __pos, const_reference __x);
00148 
00149     void
00150     push_back(const_reference __x)
00151     {
00152       if (this->_M_space_left())
00153         {
00154           *this->end() = __x;
00155           ++this->_M_finish;
00156         }
00157       else
00158         this->insert(this->end(), __x);
00159     }
00160 
00161     void
00162     pop_back() throw()
00163     { --this->_M_finish; }
00164 
00165     void
00166     erase(iterator __pos) throw();
00167 
00168     void
00169     clear() throw()
00170     { this->_M_finish = this->_M_start; }
00171       };
00172 
00173     // Out of line function definitions.
00174     template<typename _Tp>
00175       void __mini_vector<_Tp>::
00176       insert(iterator __pos, const_reference __x)
00177       {
00178     if (this->_M_space_left())
00179       {
00180         size_type __to_move = this->_M_finish - __pos;
00181         iterator __dest = this->end();
00182         iterator __src = this->end() - 1;
00183 
00184         ++this->_M_finish;
00185         while (__to_move)
00186           {
00187         *__dest = *__src;
00188         --__dest; --__src; --__to_move;
00189           }
00190         *__pos = __x;
00191       }
00192     else
00193       {
00194         size_type __new_size = this->size() ? this->size() * 2 : 1;
00195         iterator __new_start = this->allocate(__new_size);
00196         iterator __first = this->begin();
00197         iterator __start = __new_start;
00198         while (__first != __pos)
00199           {
00200         *__start = *__first;
00201         ++__start; ++__first;
00202           }
00203         *__start = __x;
00204         ++__start;
00205         while (__first != this->end())
00206           {
00207         *__start = *__first;
00208         ++__start; ++__first;
00209           }
00210         if (this->_M_start)
00211           this->deallocate(this->_M_start, this->size());
00212 
00213         this->_M_start = __new_start;
00214         this->_M_finish = __start;
00215         this->_M_end_of_storage = this->_M_start + __new_size;
00216       }
00217       }
00218 
00219     template<typename _Tp>
00220       void __mini_vector<_Tp>::
00221       erase(iterator __pos) throw()
00222       {
00223     while (__pos + 1 != this->end())
00224       {
00225         *__pos = __pos[1];
00226         ++__pos;
00227       }
00228     --this->_M_finish;
00229       }
00230 
00231 
00232     template<typename _Tp>
00233       struct __mv_iter_traits
00234       {
00235     typedef typename _Tp::value_type value_type;
00236     typedef typename _Tp::difference_type difference_type;
00237       };
00238 
00239     template<typename _Tp>
00240       struct __mv_iter_traits<_Tp*>
00241       {
00242     typedef _Tp value_type;
00243     typedef ptrdiff_t difference_type;
00244       };
00245 
00246     enum 
00247       { 
00248     bits_per_byte = 8,
00249     bits_per_block = sizeof(size_t) * size_t(bits_per_byte) 
00250       };
00251 
00252     template<typename _ForwardIterator, typename _Tp, typename _Compare>
00253       _ForwardIterator
00254       __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
00255             const _Tp& __val, _Compare __comp)
00256       {
00257     typedef typename __mv_iter_traits<_ForwardIterator>::value_type
00258       _ValueType;
00259     typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
00260       _DistanceType;
00261 
00262     _DistanceType __len = __last - __first;
00263     _DistanceType __half;
00264     _ForwardIterator __middle;
00265 
00266     while (__len > 0)
00267       {
00268         __half = __len >> 1;
00269         __middle = __first;
00270         __middle += __half;
00271         if (__comp(*__middle, __val))
00272           {
00273         __first = __middle;
00274         ++__first;
00275         __len = __len - __half - 1;
00276           }
00277         else
00278           __len = __half;
00279       }
00280     return __first;
00281       }
00282 
00283     template<typename _InputIterator, typename _Predicate>
00284       inline _InputIterator
00285       __find_if(_InputIterator __first, _InputIterator __last, _Predicate __p)
00286       {
00287     while (__first != __last && !__p(*__first))
00288       ++__first;
00289     return __first;
00290       }
00291 
00292     /** @brief The number of Blocks pointed to by the address pair
00293      *  passed to the function.
00294      */
00295     template<typename _AddrPair>
00296       inline size_t
00297       __num_blocks(_AddrPair __ap)
00298       { return (__ap.second - __ap.first) + 1; }
00299 
00300     /** @brief The number of Bit-maps pointed to by the address pair
00301      *  passed to the function.
00302      */
00303     template<typename _AddrPair>
00304       inline size_t
00305       __num_bitmaps(_AddrPair __ap)
00306       { return __num_blocks(__ap) / size_t(bits_per_block); }
00307 
00308     // _Tp should be a pointer type.
00309     template<typename _Tp>
00310       class _Inclusive_between 
00311       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
00312       {
00313     typedef _Tp pointer;
00314     pointer _M_ptr_value;
00315     typedef typename std::pair<_Tp, _Tp> _Block_pair;
00316     
00317       public:
00318     _Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr) 
00319     { }
00320     
00321     bool 
00322     operator()(_Block_pair __bp) const throw()
00323     {
00324       if (std::less_equal<pointer>()(_M_ptr_value, __bp.second) 
00325           && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
00326         return true;
00327       else
00328         return false;
00329     }
00330       };
00331   
00332     // Used to pass a Functor to functions by reference.
00333     template<typename _Functor>
00334       class _Functor_Ref 
00335       : public std::unary_function<typename _Functor::argument_type, 
00336                    typename _Functor::result_type>
00337       {
00338     _Functor& _M_fref;
00339     
00340       public:
00341     typedef typename _Functor::argument_type argument_type;
00342     typedef typename _Functor::result_type result_type;
00343 
00344     _Functor_Ref(_Functor& __fref) : _M_fref(__fref) 
00345     { }
00346 
00347     result_type 
00348     operator()(argument_type __arg) 
00349     { return _M_fref(__arg); }
00350       };
00351 
00352     /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
00353      *
00354      *  @brief  The class which acts as a predicate for applying the
00355      *  first-fit memory allocation policy for the bitmap allocator.
00356      */
00357     // _Tp should be a pointer type, and _Alloc is the Allocator for
00358     // the vector.
00359     template<typename _Tp>
00360       class _Ffit_finder 
00361       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
00362       {
00363     typedef typename std::pair<_Tp, _Tp> _Block_pair;
00364     typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
00365     typedef typename _BPVector::difference_type _Counter_type;
00366 
00367     size_t* _M_pbitmap;
00368     _Counter_type _M_data_offset;
00369 
00370       public:
00371     _Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
00372     { }
00373 
00374     bool 
00375     operator()(_Block_pair __bp) throw()
00376     {
00377       // Set the _rover to the last physical location bitmap,
00378       // which is the bitmap which belongs to the first free
00379       // block. Thus, the bitmaps are in exact reverse order of
00380       // the actual memory layout. So, we count down the bimaps,
00381       // which is the same as moving up the memory.
00382 
00383       // If the used count stored at the start of the Bit Map headers
00384       // is equal to the number of Objects that the current Block can
00385       // store, then there is definitely no space for another single
00386       // object, so just return false.
00387       _Counter_type __diff = 
00388         __gnu_cxx::__detail::__num_bitmaps(__bp);
00389 
00390       if (*(reinterpret_cast<size_t*>
00391         (__bp.first) - (__diff + 1))
00392           == __gnu_cxx::__detail::__num_blocks(__bp))
00393         return false;
00394 
00395       size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
00396 
00397       for (_Counter_type __i = 0; __i < __diff; ++__i)
00398         {
00399           _M_data_offset = __i;
00400           if (*__rover)
00401         {
00402           _M_pbitmap = __rover;
00403           return true;
00404         }
00405           --__rover;
00406         }
00407       return false;
00408     }
00409 
00410     
00411     size_t*
00412     _M_get() const throw()
00413     { return _M_pbitmap; }
00414 
00415     _Counter_type
00416     _M_offset() const throw()
00417     { return _M_data_offset * size_t(bits_per_block); }
00418       };
00419 
00420 
00421     /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
00422      *
00423      *  @brief  The bitmap counter which acts as the bitmap
00424      *  manipulator, and manages the bit-manipulation functions and
00425      *  the searching and identification functions on the bit-map.
00426      */
00427     // _Tp should be a pointer type.
00428     template<typename _Tp>
00429       class _Bitmap_counter
00430       {
00431     typedef typename __detail::__mini_vector<typename std::pair<_Tp, _Tp> >
00432     _BPVector;
00433     typedef typename _BPVector::size_type _Index_type;
00434     typedef _Tp pointer;
00435     
00436     _BPVector& _M_vbp;
00437     size_t* _M_curr_bmap;
00438     size_t* _M_last_bmap_in_block;
00439     _Index_type _M_curr_index;
00440     
00441       public:
00442     // Use the 2nd parameter with care. Make sure that such an
00443     // entry exists in the vector before passing that particular
00444     // index to this ctor.
00445     _Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
00446     { this->_M_reset(__index); }
00447     
00448     void 
00449     _M_reset(long __index = -1) throw()
00450     {
00451       if (__index == -1)
00452         {
00453           _M_curr_bmap = 0;
00454           _M_curr_index = static_cast<_Index_type>(-1);
00455           return;
00456         }
00457 
00458       _M_curr_index = __index;
00459       _M_curr_bmap = reinterpret_cast<size_t*>
00460         (_M_vbp[_M_curr_index].first) - 1;
00461       
00462       _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
00463     
00464       _M_last_bmap_in_block = _M_curr_bmap
00465         - ((_M_vbp[_M_curr_index].second 
00466         - _M_vbp[_M_curr_index].first + 1) 
00467            / size_t(bits_per_block) - 1);
00468     }
00469     
00470     // Dangerous Function! Use with extreme care. Pass to this
00471     // function ONLY those values that are known to be correct,
00472     // otherwise this will mess up big time.
00473     void
00474     _M_set_internal_bitmap(size_t* __new_internal_marker) throw()
00475     { _M_curr_bmap = __new_internal_marker; }
00476     
00477     bool
00478     _M_finished() const throw()
00479     { return(_M_curr_bmap == 0); }
00480     
00481     _Bitmap_counter&
00482     operator++() throw()
00483     {
00484       if (_M_curr_bmap == _M_last_bmap_in_block)
00485         {
00486           if (++_M_curr_index == _M_vbp.size())
00487         _M_curr_bmap = 0;
00488           else
00489         this->_M_reset(_M_curr_index);
00490         }
00491       else
00492         --_M_curr_bmap;
00493       return *this;
00494     }
00495     
00496     size_t*
00497     _M_get() const throw()
00498     { return _M_curr_bmap; }
00499     
00500     pointer 
00501     _M_base() const throw()
00502     { return _M_vbp[_M_curr_index].first; }
00503 
00504     _Index_type
00505     _M_offset() const throw()
00506     {
00507       return size_t(bits_per_block)
00508         * ((reinterpret_cast<size_t*>(this->_M_base()) 
00509         - _M_curr_bmap) - 1);
00510     }
00511     
00512     _Index_type
00513     _M_where() const throw()
00514     { return _M_curr_index; }
00515       };
00516 
00517     /** @brief  Mark a memory address as allocated by re-setting the
00518      *  corresponding bit in the bit-map.
00519      */
00520     inline void 
00521     __bit_allocate(size_t* __pbmap, size_t __pos) throw()
00522     {
00523       size_t __mask = 1 << __pos;
00524       __mask = ~__mask;
00525       *__pbmap &= __mask;
00526     }
00527   
00528     /** @brief  Mark a memory address as free by setting the
00529      *  corresponding bit in the bit-map.
00530      */
00531     inline void 
00532     __bit_free(size_t* __pbmap, size_t __pos) throw()
00533     {
00534       size_t __mask = 1 << __pos;
00535       *__pbmap |= __mask;
00536     }
00537   } // namespace __detail
00538 
00539   /** @brief  Generic Version of the bsf instruction.
00540    */
00541   inline size_t 
00542   _Bit_scan_forward(size_t __num)
00543   { return static_cast<size_t>(__builtin_ctzl(__num)); }
00544 
00545   /** @class  free_list bitmap_allocator.h bitmap_allocator.h
00546    *
00547    *  @brief  The free list class for managing chunks of memory to be
00548    *  given to and returned by the bitmap_allocator.
00549    */
00550   class free_list
00551   {
00552     typedef size_t*                 value_type;
00553     typedef __detail::__mini_vector<value_type> vector_type;
00554     typedef vector_type::iterator       iterator;
00555     typedef __mutex             __mutex_type;
00556 
00557     struct _LT_pointer_compare
00558     {
00559       bool
00560       operator()(const size_t* __pui, 
00561          const size_t __cui) const throw()
00562       { return *__pui < __cui; }
00563     };
00564 
00565 #if defined __GTHREADS
00566     __mutex_type&
00567     _M_get_mutex()
00568     {
00569       static __mutex_type _S_mutex;
00570       return _S_mutex;
00571     }
00572 #endif
00573 
00574     vector_type&
00575     _M_get_free_list()
00576     {
00577       static vector_type _S_free_list;
00578       return _S_free_list;
00579     }
00580 
00581     /** @brief  Performs validation of memory based on their size.
00582      *
00583      *  @param  __addr The pointer to the memory block to be
00584      *  validated.
00585      *
00586      *  @detail  Validates the memory block passed to this function and
00587      *  appropriately performs the action of managing the free list of
00588      *  blocks by adding this block to the free list or deleting this
00589      *  or larger blocks from the free list.
00590      */
00591     void
00592     _M_validate(size_t* __addr) throw()
00593     {
00594       vector_type& __free_list = _M_get_free_list();
00595       const vector_type::size_type __max_size = 64;
00596       if (__free_list.size() >= __max_size)
00597     {
00598       // Ok, the threshold value has been reached.  We determine
00599       // which block to remove from the list of free blocks.
00600       if (*__addr >= *__free_list.back())
00601         {
00602           // Ok, the new block is greater than or equal to the
00603           // last block in the list of free blocks. We just free
00604           // the new block.
00605           ::operator delete(static_cast<void*>(__addr));
00606           return;
00607         }
00608       else
00609         {
00610           // Deallocate the last block in the list of free lists,
00611           // and insert the new one in it's correct position.
00612           ::operator delete(static_cast<void*>(__free_list.back()));
00613           __free_list.pop_back();
00614         }
00615     }
00616       
00617       // Just add the block to the list of free lists unconditionally.
00618       iterator __temp = __gnu_cxx::__detail::__lower_bound
00619     (__free_list.begin(), __free_list.end(), 
00620      *__addr, _LT_pointer_compare());
00621 
00622       // We may insert the new free list before _temp;
00623       __free_list.insert(__temp, __addr);
00624     }
00625 
00626     /** @brief  Decides whether the wastage of memory is acceptable for
00627      *  the current memory request and returns accordingly.
00628      *
00629      *  @param __block_size The size of the block available in the free
00630      *  list.
00631      *
00632      *  @param __required_size The required size of the memory block.
00633      *
00634      *  @return true if the wastage incurred is acceptable, else returns
00635      *  false.
00636      */
00637     bool 
00638     _M_should_i_give(size_t __block_size, 
00639              size_t __required_size) throw()
00640     {
00641       const size_t __max_wastage_percentage = 36;
00642       if (__block_size >= __required_size && 
00643       (((__block_size - __required_size) * 100 / __block_size)
00644        < __max_wastage_percentage))
00645     return true;
00646       else
00647     return false;
00648     }
00649 
00650   public:
00651     /** @brief This function returns the block of memory to the
00652      *  internal free list.
00653      *
00654      *  @param  __addr The pointer to the memory block that was given
00655      *  by a call to the _M_get function.
00656      */
00657     inline void 
00658     _M_insert(size_t* __addr) throw()
00659     {
00660 #if defined __GTHREADS
00661       __gnu_cxx::__scoped_lock __bfl_lock(_M_get_mutex());
00662 #endif
00663       // Call _M_validate to decide what should be done with
00664       // this particular free list.
00665       this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
00666       // See discussion as to why this is 1!
00667     }
00668     
00669     /** @brief  This function gets a block of memory of the specified
00670      *  size from the free list.
00671      *
00672      *  @param  __sz The size in bytes of the memory required.
00673      *
00674      *  @return  A pointer to the new memory block of size at least
00675      *  equal to that requested.
00676      */
00677     size_t*
00678     _M_get(size_t __sz) throw(std::bad_alloc);
00679 
00680     /** @brief  This function just clears the internal Free List, and
00681      *  gives back all the memory to the OS.
00682      */
00683     void 
00684     _M_clear();
00685   };
00686 
00687 
00688   // Forward declare the class.
00689   template<typename _Tp> 
00690     class bitmap_allocator;
00691 
00692   // Specialize for void:
00693   template<>
00694     class bitmap_allocator<void>
00695     {
00696     public:
00697       typedef void*       pointer;
00698       typedef const void* const_pointer;
00699 
00700       // Reference-to-void members are impossible.
00701       typedef void  value_type;
00702       template<typename _Tp1>
00703         struct rebind
00704     {
00705       typedef bitmap_allocator<_Tp1> other;
00706     };
00707     };
00708 
00709   template<typename _Tp>
00710     class bitmap_allocator : private free_list
00711     {
00712     public:
00713       typedef size_t            size_type;
00714       typedef ptrdiff_t         difference_type;
00715       typedef _Tp*              pointer;
00716       typedef const _Tp*        const_pointer;
00717       typedef _Tp&              reference;
00718       typedef const _Tp&        const_reference;
00719       typedef _Tp               value_type;
00720       typedef free_list::__mutex_type   __mutex_type;
00721 
00722       template<typename _Tp1>
00723         struct rebind
00724     {
00725       typedef bitmap_allocator<_Tp1> other;
00726     };
00727 
00728     private:
00729       template<size_t _BSize, size_t _AlignSize>
00730         struct aligned_size
00731     {
00732       enum
00733         { 
00734           modulus = _BSize % _AlignSize,
00735           value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
00736         };
00737     };
00738 
00739       struct _Alloc_block
00740       {
00741     char __M_unused[aligned_size<sizeof(value_type),
00742             _BALLOC_ALIGN_BYTES>::value];
00743       };
00744 
00745 
00746       typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
00747 
00748       typedef typename 
00749       __detail::__mini_vector<_Block_pair> _BPVector;
00750 
00751 #if defined _GLIBCXX_DEBUG
00752       // Complexity: O(lg(N)). Where, N is the number of block of size
00753       // sizeof(value_type).
00754       void 
00755       _S_check_for_free_blocks() throw()
00756       {
00757     typedef typename 
00758       __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
00759     _FFF __fff;
00760     typedef typename _BPVector::iterator _BPiter;
00761     _BPiter __bpi = 
00762       __gnu_cxx::__detail::__find_if
00763       (_S_mem_blocks.begin(), _S_mem_blocks.end(), 
00764        __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));
00765 
00766     _GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
00767       }
00768 #endif
00769 
00770       /** @brief  Responsible for exponentially growing the internal
00771        *  memory pool.
00772        *
00773        *  @throw  std::bad_alloc. If memory can not be allocated.
00774        *
00775        *  @detail  Complexity: O(1), but internally depends upon the
00776        *  complexity of the function free_list::_M_get. The part where
00777        *  the bitmap headers are written has complexity: O(X),where X
00778        *  is the number of blocks of size sizeof(value_type) within
00779        *  the newly acquired block. Having a tight bound.
00780        */
00781       void 
00782       _S_refill_pool() throw(std::bad_alloc)
00783       {
00784 #if defined _GLIBCXX_DEBUG
00785     _S_check_for_free_blocks();
00786 #endif
00787 
00788     const size_t __num_bitmaps = (_S_block_size
00789                       / size_t(__detail::bits_per_block));
00790     const size_t __size_to_allocate = sizeof(size_t) 
00791       + _S_block_size * sizeof(_Alloc_block) 
00792       + __num_bitmaps * sizeof(size_t);
00793 
00794     size_t* __temp = 
00795       reinterpret_cast<size_t*>
00796       (this->_M_get(__size_to_allocate));
00797     *__temp = 0;
00798     ++__temp;
00799 
00800     // The Header information goes at the Beginning of the Block.
00801     _Block_pair __bp = 
00802       std::make_pair(reinterpret_cast<_Alloc_block*>
00803              (__temp + __num_bitmaps), 
00804              reinterpret_cast<_Alloc_block*>
00805              (__temp + __num_bitmaps) 
00806              + _S_block_size - 1);
00807     
00808     // Fill the Vector with this information.
00809     _S_mem_blocks.push_back(__bp);
00810 
00811     size_t __bit_mask = 0; // 0 Indicates all Allocated.
00812     __bit_mask = ~__bit_mask; // 1 Indicates all Free.
00813 
00814     for (size_t __i = 0; __i < __num_bitmaps; ++__i)
00815       __temp[__i] = __bit_mask;
00816 
00817     _S_block_size *= 2;
00818       }
00819 
00820 
00821       static _BPVector _S_mem_blocks;
00822       static size_t _S_block_size;
00823       static __gnu_cxx::__detail::
00824       _Bitmap_counter<_Alloc_block*> _S_last_request;
00825       static typename _BPVector::size_type _S_last_dealloc_index;
00826 #if defined __GTHREADS
00827       static __mutex_type _S_mut;
00828 #endif
00829 
00830     public:
00831 
00832       /** @brief  Allocates memory for a single object of size
00833        *  sizeof(_Tp).
00834        *
00835        *  @throw  std::bad_alloc. If memory can not be allocated.
00836        *
00837        *  @detail  Complexity: Worst case complexity is O(N), but that
00838        *  is hardly ever hit. If and when this particular case is
00839        *  encountered, the next few cases are guaranteed to have a
00840        *  worst case complexity of O(1)!  That's why this function
00841        *  performs very well on average. You can consider this
00842        *  function to have a complexity referred to commonly as:
00843        *  Amortized Constant time.
00844        */
00845       pointer 
00846       _M_allocate_single_object() throw(std::bad_alloc)
00847       {
00848 #if defined __GTHREADS
00849     __gnu_cxx::__scoped_lock __bit_lock(_S_mut);
00850 #endif
00851 
00852     // The algorithm is something like this: The last_request
00853     // variable points to the last accessed Bit Map. When such a
00854     // condition occurs, we try to find a free block in the
00855     // current bitmap, or succeeding bitmaps until the last bitmap
00856     // is reached. If no free block turns up, we resort to First
00857     // Fit method.
00858 
00859     // WARNING: Do not re-order the condition in the while
00860     // statement below, because it relies on C++'s short-circuit
00861     // evaluation. The return from _S_last_request->_M_get() will
00862     // NOT be dereference able if _S_last_request->_M_finished()
00863     // returns true. This would inevitably lead to a NULL pointer
00864     // dereference if tinkered with.
00865     while (_S_last_request._M_finished() == false
00866            && (*(_S_last_request._M_get()) == 0))
00867       {
00868         _S_last_request.operator++();
00869       }
00870 
00871     if (__builtin_expect(_S_last_request._M_finished() == true, false))
00872       {
00873         // Fall Back to First Fit algorithm.
00874         typedef typename 
00875           __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
00876         _FFF __fff;
00877         typedef typename _BPVector::iterator _BPiter;
00878         _BPiter __bpi = 
00879           __gnu_cxx::__detail::__find_if
00880           (_S_mem_blocks.begin(), _S_mem_blocks.end(), 
00881            __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));
00882 
00883         if (__bpi != _S_mem_blocks.end())
00884           {
00885         // Search was successful. Ok, now mark the first bit from
00886         // the right as 0, meaning Allocated. This bit is obtained
00887         // by calling _M_get() on __fff.
00888         size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
00889         __detail::__bit_allocate(__fff._M_get(), __nz_bit);
00890 
00891         _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
00892 
00893         // Now, get the address of the bit we marked as allocated.
00894         pointer __ret = reinterpret_cast<pointer>
00895           (__bpi->first + __fff._M_offset() + __nz_bit);
00896         size_t* __puse_count = 
00897           reinterpret_cast<size_t*>
00898           (__bpi->first) 
00899           - (__gnu_cxx::__detail::__num_bitmaps(*__bpi) + 1);
00900         
00901         ++(*__puse_count);
00902         return __ret;
00903           }
00904         else
00905           {
00906         // Search was unsuccessful. We Add more memory to the
00907         // pool by calling _S_refill_pool().
00908         _S_refill_pool();
00909 
00910         // _M_Reset the _S_last_request structure to the first
00911         // free block's bit map.
00912         _S_last_request._M_reset(_S_mem_blocks.size() - 1);
00913 
00914         // Now, mark that bit as allocated.
00915           }
00916       }
00917 
00918     // _S_last_request holds a pointer to a valid bit map, that
00919     // points to a free block in memory.
00920     size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
00921     __detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
00922 
00923     pointer __ret = reinterpret_cast<pointer>
00924       (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
00925 
00926     size_t* __puse_count = reinterpret_cast<size_t*>
00927       (_S_mem_blocks[_S_last_request._M_where()].first)
00928       - (__gnu_cxx::__detail::
00929          __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
00930 
00931     ++(*__puse_count);
00932     return __ret;
00933       }
00934 
00935       /** @brief  Deallocates memory that belongs to a single object of
00936        *  size sizeof(_Tp).
00937        *
00938        *  @detail  Complexity: O(lg(N)), but the worst case is not hit
00939        *  often!  This is because containers usually deallocate memory
00940        *  close to each other and this case is handled in O(1) time by
00941        *  the deallocate function.
00942        */
00943       void 
00944       _M_deallocate_single_object(pointer __p) throw()
00945       {
00946 #if defined __GTHREADS
00947     __gnu_cxx::__scoped_lock __bit_lock(_S_mut);
00948 #endif
00949     _Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
00950 
00951     typedef typename _BPVector::iterator _Iterator;
00952     typedef typename _BPVector::difference_type _Difference_type;
00953 
00954     _Difference_type __diff;
00955     long __displacement;
00956 
00957     _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
00958 
00959     
00960     if (__gnu_cxx::__detail::_Inclusive_between<_Alloc_block*>
00961         (__real_p) (_S_mem_blocks[_S_last_dealloc_index]))
00962       {
00963         _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
00964                   <= _S_mem_blocks.size() - 1);
00965 
00966         // Initial Assumption was correct!
00967         __diff = _S_last_dealloc_index;
00968         __displacement = __real_p - _S_mem_blocks[__diff].first;
00969       }
00970     else
00971       {
00972         _Iterator _iter = __gnu_cxx::__detail::
00973 	      __find_if(_S_mem_blocks.begin(), 
00974             _S_mem_blocks.end(), 
00975             __gnu_cxx::__detail::
00976             _Inclusive_between<_Alloc_block*>(__real_p));
00977 
00978         _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
00979 
00980         __diff = _iter - _S_mem_blocks.begin();
00981         __displacement = __real_p - _S_mem_blocks[__diff].first;
00982         _S_last_dealloc_index = __diff;
00983       }
00984 
00985     // Get the position of the iterator that has been found.
00986     const size_t __rotate = (__displacement
00987                  % size_t(__detail::bits_per_block));
00988     size_t* __bitmapC = 
00989       reinterpret_cast<size_t*>
00990       (_S_mem_blocks[__diff].first) - 1;
00991     __bitmapC -= (__displacement / size_t(__detail::bits_per_block));
00992       
00993     __detail::__bit_free(__bitmapC, __rotate);
00994     size_t* __puse_count = reinterpret_cast<size_t*>
00995       (_S_mem_blocks[__diff].first)
00996       - (__gnu_cxx::__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
00997     
00998     _GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
00999 
01000     --(*__puse_count);
01001 
01002     if (__builtin_expect(*__puse_count == 0, false))
01003       {
01004         _S_block_size /= 2;
01005       
01006         // We can safely remove this block.
01007         // _Block_pair __bp = _S_mem_blocks[__diff];
01008         this->_M_insert(__puse_count);
01009         _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
01010 
01011         // Reset the _S_last_request variable to reflect the
01012         // erased block. We do this to protect future requests
01013         // after the last block has been removed from a particular
01014         // memory Chunk, which in turn has been returned to the
01015         // free list, and hence had been erased from the vector,
01016         // so the size of the vector gets reduced by 1.
01017         if ((_Difference_type)_S_last_request._M_where() >= __diff--)
01018           _S_last_request._M_reset(__diff); 
01019 
01020         // If the Index into the vector of the region of memory
01021         // that might hold the next address that will be passed to
01022         // deallocated may have been invalidated due to the above
01023         // erase procedure being called on the vector, hence we
01024         // try to restore this invariant too.
01025         if (_S_last_dealloc_index >= _S_mem_blocks.size())
01026           {
01027         _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
01028         _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
01029           }
01030       }
01031       }
01032 
01033     public:
01034       bitmap_allocator() throw()
01035       { }
01036 
01037       bitmap_allocator(const bitmap_allocator&)
01038       { }
01039 
01040       template<typename _Tp1>
01041         bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
01042         { }
01043 
01044       ~bitmap_allocator() throw()
01045       { }
01046 
01047       pointer 
01048       allocate(size_type __n)
01049       {
01050     if (__builtin_expect(__n > this->max_size(), false))
01051       std::__throw_bad_alloc();
01052 
01053     if (__builtin_expect(__n == 1, true))
01054       return this->_M_allocate_single_object();
01055     else
01056       { 
01057         const size_type __b = __n * sizeof(value_type);
01058         return reinterpret_cast<pointer>(::operator new(__b));
01059       }
01060       }
01061 
01062       pointer 
01063       allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
01064       { return allocate(__n); }
01065 
01066       void 
01067       deallocate(pointer __p, size_type __n) throw()
01068       {
01069     if (__builtin_expect(__p != 0, true))
01070       {
01071         if (__builtin_expect(__n == 1, true))
01072           this->_M_deallocate_single_object(__p);
01073         else
01074           ::operator delete(__p);
01075       }
01076       }
01077 
01078       pointer 
01079       address(reference __r) const
01080       { return &__r; }
01081 
01082       const_pointer 
01083       address(const_reference __r) const
01084       { return &__r; }
01085 
01086       size_type 
01087       max_size() const throw()
01088       { return size_type(-1) / sizeof(value_type); }
01089 
01090       void 
01091       construct(pointer __p, const_reference __data)
01092       { ::new(__p) value_type(__data); }
01093 
01094       void 
01095       destroy(pointer __p)
01096       { __p->~value_type(); }
01097     };
01098 
01099   template<typename _Tp1, typename _Tp2>
01100     bool 
01101     operator==(const bitmap_allocator<_Tp1>&, 
01102            const bitmap_allocator<_Tp2>&) throw()
01103     { return true; }
01104   
01105   template<typename _Tp1, typename _Tp2>
01106     bool 
01107     operator!=(const bitmap_allocator<_Tp1>&, 
01108            const bitmap_allocator<_Tp2>&) throw() 
01109   { return false; }
01110 
01111   // Static member definitions.
01112   template<typename _Tp>
01113     typename bitmap_allocator<_Tp>::_BPVector
01114     bitmap_allocator<_Tp>::_S_mem_blocks;
01115 
01116   template<typename _Tp>
01117     size_t bitmap_allocator<_Tp>::_S_block_size = 
01118     2 * size_t(__detail::bits_per_block);
01119 
01120   template<typename _Tp>
01121     typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type 
01122     bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
01123 
01124   template<typename _Tp>
01125     __gnu_cxx::__detail::_Bitmap_counter 
01126   <typename bitmap_allocator<_Tp>::_Alloc_block*>
01127     bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
01128 
01129 #if defined __GTHREADS
01130   template<typename _Tp>
01131     typename bitmap_allocator<_Tp>::__mutex_type
01132     bitmap_allocator<_Tp>::_S_mut;
01133 #endif
01134 
01135 _GLIBCXX_END_NAMESPACE
01136 
01137 #endif 
01138 

Generated on Thu Nov 1 13:11:20 2007 for libstdc++ by  doxygen 1.5.1